Answer:
% Ca = 24.69%
% H = 1.2%
% C = 14.8%
% O = 59.25%
Explanation:
The percentage by mass of each element can be calculated by dividing the mass of each element in the compound by the molar mass of the compound.
Molar mass of Ca(HCO3)2
Where; (Ca= 40, H = 1, O = 16, C= 12)
= 40 + {1 + 12 + 16(3)}2
= 40 + {13 + 48}2
= 40 + {61}2
= 40 + 122
= 162g/mol
- % mass of Ca = 40/162 × 100
= 0.2469 × 100
= 24.69%
- % mass of H = 2/162 × 100
= 0.012 × 100
= 1.2%
- % mass of C = 24/162 × 100
= 0.148 × 100
= 14.8%
- % mass of O = 96/162 × 100
= 0.5925 × 100
= 59.25%
Answer:
2
Explanation:
In two reactions energy is released.
1) C₆H₁₂O₆ + 6O₂ → 6H₂O + 6CO₂ + heat
It is cellular respiration reaction.It involves the breakdown of glucose molecule in the presence of oxygen to yield large amount of energy. Water and carbon dioxide are also produced as a byproduct.
Glucose + oxygen → carbon dioxide + water + 38ATP
2) 2H₂ + O₂ → 2H₂O ΔH = -486 kj/mol
The given reaction is formation of water. In this reaction oxygen and hydrogen react to form water and 486 kj/mol is also released.
The reaction in which heat is released is called exothermic reaction.
Exothermic reaction:
The type of reactions in which energy is released are called exothermic reactions.
In this type of reaction energy needed to break the bonds are less than the energy released during the bond formation.
For example:
Chemical equation:
C + O₂ → CO₂
ΔH = -393 Kj/mol
it can be written as,
C + O₂ → CO₂ + 393 Kj/mol
Endothermic reactions:
The type of reactions in which energy is absorbed are called endothermic reactions.
In this type of reaction energy needed to break the bond are higher than the energy released during bond formation.
For example:
C + H₂O → CO + H₂
ΔH = +131 kj/mol
it can be written as,
C + H₂O + 131 kj/mol → CO + H₂
Answer:
gametes are sperm and an egg individually. when the gametes come together and fertilize, they form a zygote.
Answer:
b Fuel for fusion reactors can be extracted from ocean water.
Explanation:
The fuel is deuterium, which makes up 0.02% of the hydrogen atoms in water. The oceans contain more than a billion cubic kilometres of water, so that's a lot of deuterium.
a is wrong. The fuel for fusion reactors is deuterium.
c is wrong. There is much research, but there are no large-scale fusion reactors in operation.
d is wrong. Fusion reactors do not produce radioactive waste as spent fuel. Most of the radioactive waste would be the reactor core itself.