Answer:
O Option 1
Explanation:
IF ENERGY IS RELEASED, THEN ENERGY RELEASED SHOULD BE SUBTRACTED FROM ORIGINAL.
(16.32 X 10^-19) - (5.4 X 10^-19)
10.92 X 10^-19
You need to know the energy frequency relationship for photons, which is thanks to Max Planck:
Photon Energy = Planck constant x Frequency
Rarranged:
Photon Energy / Planck Constant = Frequency
Planck Constant = 6.63x10^-34
2.93x10^-25 / 6.63x10^-34 = Frequency
Answer:
The final temperature was 612 °C
Explanation:
Charles's law relates the volume and temperature of a certain amount of ideal gas, maintained at a constant pressure, using a constant of direct proportionality. In this law, Charles says that at constant pressure, as the temperature increases, the volume of the gas increases and as the temperature decreases, the volume of the gas decreases. That is, Charles's law is a law that says that when the amount of gas and pressure are kept constant, the ratio between volume and temperature will always have the same value:

When you want to study two different states, an initial and a final one of a gas and evaluate the change in volume as a function of temperature or vice versa, you can use the expression:

In this case:
- V1= 5.76 L
- T1= 22 °C= 295 °K (Being 0°C=273°K)
- V2=17.28 L
- T2=?
Replacing:

Solving:

T2= 885 °K = 612 °C
<u><em>The final temperature was 612 °C</em></u>
For a mole of P4O10, there are 4 moles of P. Hence for 76 moles of P4O10, the number of P moles is a total of 304.