Answer:
The law of conservation of mass states that mass in an isolated system is neither created nor destroyed by chemical reactions or physical transformations. According to the law of conservation of mass, the mass of the products in a chemical reaction must equal the mass of the reactants.
Explanation:
How does the concept of conservation of mass apply to chemical reactions? the reactants and products have exactly the same atoms. the reactants and products have exactly the same molecules. the change in the amount of matter is equal to the change in energy.
can someone help me with my qustions?
Answer:
could be reduced by one-quarter.
Explanation:
There is a shortcut trick while doing such fill in the blanks of nuclear reactions of hydrogen and helium
Let a,b,care elements of set N

Now
for our question
Hence b=4-3+1=1+1=2
So
The missing place should b e deuterium of heavy water
In nuclear reactions energy is released so it's mentioned on product side not reactant side
Answer:
Electron configuration is the structural arrangement notation of electrons in the shells or energy levels of an atom.
Explanation:

Answer: A volume of 59 mL of 0.220 M HBr solution is required to produce 0.0130 moles of HBr.
Explanation:
Given: Moles = 0.0130 mol
Molarity = 0.220 M
Molarity is the number of moles of solute present in liter of a solution.

Substitute the values into above formula as follows.

As 1 L = 1000 mL
So, 0.059 L = 59 mL
Thus, we can conclude that a volume of 59 mL of 0.220 M HBr solution is required to produce 0.0130 moles of HBr.