Answer:
47.5 g of water can be formed
Explanation:
This is the reaction:
CH₄ + 2O₂ → CO₂ + 2H₂O
Methane combustion.
In this process 1 mol of methane react with 2 moles of oxygen to produce 2 moles of water and 1 mol of carbon dioxide.
As ratio is 1:2, I will produce the double of moles of water, with the moles of methane I have.
1.320 mol .2 = 2.64 moles
Now, we can convert the moles to mass (mol . molar mass)
2.64 mol . 18g/mol = 47.5 g
The number 6.022 × 1023 indicating the number of atoms or molecules in a mole of any substance
Answer:
F i think i pretty sure F!!!!!!!!
In buffer solution there is an equilibrium between the acid HA and its conjugate base A⁻: HA(aq) ⇌ H⁺(aq) + A⁻(aq).
When acid (H⁺ ions) is added to the buffer solution, the equilibrium is shifted to the left, because conjugate base (A⁻) reacts with hydrogen cations from added acid, according to Le Chatelier's principle: H⁺(aq) + A⁻(aq) ⇄ HA(aq). So, the conjugate base (A⁻) consumes some hydrogen cations and pH is not decreasing (less H⁺ ions, higher pH of solution).
A buffer can be defined as a substance that prevents the pH of a solution from changing by either releasing or absorbing H⁺ in a solution.
Buffer is a solution that can resist pH change upon the addition of an acidic or basic components and it is able to neutralize small amounts of added acid or base, pH of the solution is relatively stable
<span>Solubility product constant (Ksp) is </span>applied to the saturated ionic solutions<span> which are in equilibrium with its
solid form. The solid is partially dissociated into its ions.</span><span>
For the BaF, the dissociation as follows;
BaF</span>₂(s) ⇄ Ba²⁺(aq)
+ 2F⁻(aq)
<span>
Hence,
Ksp = [Ba</span>²⁺(aq)] [F⁻(aq)]²