Answer:
On the attached picture.
Explanation:
Hello,
At first, it is important to remember that kinetic molecular theory help us understand how the molecules of a gas behave in terms of motion. In such a way, the relative velocity of a gas molecule has the following relationship with the gas' molar mass:
∝
That is, an inversely proportional relationship which allows us to infer that the bigger the molecule the slower it. In this manner, as argon is smaller than xenon, it will move faster.
Now, as the gases are in equal molar amounts and considering that argon moves faster, on the attached picture you will find the suitable depiction of the gas sample, since red dots (argon) have a larger tail than the blue dots (xenon).
Best regards.
A.fluoride
Fluoride helps to prevent tooth decay
I believe the type of compound fe3n2 is ionic.
Answer:

Explanation:
In this case, we can start with the <u>formula of Platinum (II) Chloride</u>. The cation is the atom at the left of the name (in this case
) and the anion is the atom at the right of the name (in this case
). With this in mind, the <u>formula would be</u>
.
Now, if we used <u>metallic copper</u> we have to put in the reaction only the <u>copper atom symbol</u>
. So, we have as reagents:

The question now is: <u>What would be the products?</u> To answer this, we have to remember <u>"single displacement reactions"</u>. With a general reaction:

With this in mind, the reaction would be:

I hope it helps!
Answer:
The answer to your questions is Cm = 25.5 J/mol°C
Explanation:
Data
Heat capacity = 0.390 J/g°C
Molar heat capacity = ?
Process
1.- Look for the atomic number of Zinc
Z = 65.4 g/mol
2.- Convert heat capacity to molar heat capacity
(0.390 J/g°C)(65.4 g/mol)
- Simplify and result
Cm = 25.5 J/mol°C