Answer:
1.36 x 10^-3 cm
Explanation:
Area = 50 ft^2 = 46451.5 cm^2
mass = 6 oz = 170.097 g
density = 2.70 g/cm^3
Let t be the thickness of foil in cm.
mass = volume x density
mass = area x thickness x density
170.097 = 46451.5 x t x 2.70
t = 1.36 x 10^-3 cm
Thus, the thickness of aluminium foil is 1.36 x 10^-3 cm.
Answer:
102000 kg
Explanation:
Given:
A total Δν = 15 km/s
first stage mass = 1000 tonnes
specific impulse of liquid rocket = 300 s
Mass flow rate of liquid fuel = 1500 kg/s
specific impulse of solid fuel = 250 s
Mass flow of solid fuel = 200 kg/s
First stage burn time = 1 minute = 1 × 60 seconds = 60 seconds
Now,
Mass flow of liquid fuel in 1 minute = Mass flow rate × Burn time
or
Mass flow of liquid fuel in 1 minute = 1500 × 60 = 90000 kg
Also,
Mass flow of solid fuel in 1 minute = Mass flow rate × Burn time
or
Mass flow of solid fuel in 1 minute = 200 × 60 = 12000 kg
Therefore,
The total jettisoned mass flow of the fuel in first stage
= 90000 kg + 12000 kg
= 102000 kg
Answer:
The answer is A Ruler and Balance
Explanation:
Answer:
Total momentum, p = 21.24 kg-m/s
Explanation:
Given that,
Mass of first piece, 
Mass of the second piece, 
Speed of the first piece,
(along x axis)
Speed of the second piece,
(along y axis)
To find,
The total momentum of the two pieces.
Solve,
The total momentum of two pieces is equal to the sum of momentum along x axis and along y axis.






The net momentum is given by :


p = 21.24 kg-m/s
Therefore, the total momentum of the two pieces is 21.24 kg-m/s.
Answer:
noble gases are basically a group of gases that are similar in their chemical compounds, theres six of them : helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe), and the radioactive radon (Rn).
~batmans wife dun dun dun.....