Explanation:
Rutherford proposed a revised model for the atom, called the planetary model. The previous model of the atom was Thomson's Plum Pudding Model which consisted of freely moving positive and negative charges inside the atom.
Rutherford proposed his model after an experiment he conducted called the Gold Foil Experiment. This experiment consisted of a thin gold sheet into which alpha particles were shot upon and they were detected by a sensor. The image attached will give a better explanation of this. In this experiment he shot a beam of alpha particles(helium nucleus) at a thin sheet of gold. Rutherford hypothesised that there should be minimum deflection of the positively charged alpha particles occuring due to the repulsion of the alpha particle with the positive charges in the thin gold sheet. This was not the case.
However what he found was that most of alpha particles went straight through the thin sheet of gold but some were reflected back to him. This surprised him. Hence he proposed that most of the atom must be empty space as most of the alpha particles went straight through the sheet and there must be a heavy nucleus inside the atom causing the alpha particles to bounce back.
Answer:
3.6*10^18s
Explanation:
To find the period of the satellite
We need to apply kephler's third law
Which is
MP² = (4π²/G) d³
d=semi-major axis which is the distance from center of moon = 98km+1740km = 1838km
where M= mass of the moon = 7.3x10^22kg
P=period
G=newtonian gravatational constant= 6.67x10^-11
To find the Period solve for P
P = √[(4π²/G M)xd³]
P=√(4 π²/6.67x10^-22*7.3x10^22kg) x (1.838x10^6m)³]
= 3.6*10^18s
Answer:
If we put pressure on a solid or a liquid, there is essentially no change in volume. ... The kinetic-molecular theory explains why gases are more compressible than either liquids or solids. Gases are compressible because most of the volume of a gas is composed of the large amounts of empty space between the gas particles.
Explanation:
Answer:
120N
Explanation:
Newton's second law formula: F= ma
given that m = 10 kg, a = 12 m/s^2
F = ma = 10 kg * 12 m/s^2 = 120 kgm/s^2 = 120 N
Answer:
<em>A = 6.9 cm</em>
Explanation:
<u>Simple Harmonic Motion</u>
A mass-spring system is a common example of a simple harmonic motion device since it keeps oscillating when the spring is stretched back and forth.
If a mass m is attached to a spring of constant k and they are set to oscillate, the angular frequency of the motion is

The equation for the motion of the object is written as a sinusoid:

Where A is the amplitude.
The instantaneous speed is computed as the derivative of the distance

And the maximum speed is

Solving for the amplitude

Computing w

Calculating A

