Answer:
5
Explanation:
Let there are three capacitances, C1, C2, and C3.
Combination I:
All the three are connected in series combination.
Combination II:
All the three are connected in parallel combination.
Combination III:
C1, C2 are in parallel and then C3 in series.
Combination IV:
C1, C3 are in parallel and then C2 in series.
Combination V:
C3, C2 are in parallel and then C1 in series.
Answer:
Depending on which hemisphere it is, like western to eastern, It would most likely get stuck at the center. You would also have to put more things into thought like acceleration, velocity, and speed.
BUT since the question asked "would it pop out the other side?", I'm assuming it's talking about northern to southern hemisphere. so in that case it would pop out the other side since gravity makes things go downwards.
Answer:
a) 
b) 
Explanation:
From the question we are told that:
Density 
Velocity of wind 
Dimension of rectangle:50 cm wide and 90 cm
Drag coefficient 
a)
Generally the equation for Force is mathematically given by



Therefore Torque



b)
Generally the equation for torque due to weight is mathematically given by

Where

Therefore




There is no such thing as"cold", in the same way that there is no such thing
as "darkness" or "quietness". "Darkness" is the absence of light, "quietness"
is the absence of sound, and "cold" is the absence of heat.
Tom should have said that insulation <em>keeps the heat in</em> .
Answer:
It would take the object 5.4 s to reach the ground.
Explanation:
Hi there!
The equation of the height of a free-falling object at any given time, neglecting air resistance, is the following:
h = h0 + v0 · t + 1/2 · g · t²
Where:
h = height of the object at time t.
h0 = initial height.
v0 = initial velocity.
g = acceleration due to gravity (-32.2 ft/s² considering the upward direction as positive).
t = time
Let´s supose that the object is dropped and not thrown so that v0 = 0. Then:
h = h0 + 1/2 · g · t²
We have to find the time at which h = 0:
0 = 470 ft - 1/2 · 32.2 ft/s² · t²
Solving for t:
-470 ft = -16.1 ft/s² · t²
-470 ft / -16.1 ft/s² = t²
t = 5.4 s