Answer:
25.71 kgm/s
Explanation:
Let K₁ and K₂ be the initial and final kinetic energies of object A and v₁ and v₂ its initial and final speeds.
Given that K₂ = 0.7K₁
1/2mv₂² = 0.7(1/2mv₁²)
v₂ = √0.7v₁ = √0.7 × 20 m/s = ±16.73 m/s
Since A rebounds, its velocity = -16.73 m/s and its momentum change, p₂ = mΔv = m(v₂ - v₁) = 0.7 kg (-16.73 - 20) m/s = 0.7( -36.73) = -25.71 kgm/s.
Th magnitude of object A's momentum change is thus 25.71 kgm/s
<span>This problem is solved by the equation of motion:
x = x0 + v0*t + 1/2*a*t^2,
Here x0 = 0, v0 = 40ft/sec and a = -5 ft/s^2, we need to solve for t:
v = v0 + a*t, solve how long does it take to stop: 0 = v0 + a*t --> a*t = -v0 --> t = -v0/a
-- > 40/5 = 8 seconds to stop.
In this time, the car travels x = 0 + 40*8 + 0.5*-5*8^2 ft ~ 160 ft.
Answer: The car travels 160 ft.</span>
Answer:
kinetic is the stored energy being released from being dormant
Explanation:
It would be Krypton, one of the noble gases.