how does the electric force between two charged particles change if the distance between them is increased by a factor of 3?
a. it is reduced by a factor of 3
Answer:
A) 138.8g
B)73.97 cm/s
Explanation:
K = 15.5 Kn/m
A = 7 cm
N = 37 oscillations
tn = 20 seconds
A) In harmonic motion, we know that;
ω² = k/m and m = k/ω²
Also, angular frequency (ω) = 2π/T
Now, T is the time it takes to complete one oscillation.
So from the question, we can calculate T as;
T = 22/37.
Thus ;
ω = 2π/(22/37) = 10.5672
So,mass of ball (m) = k/ω² = 15.5/10.5672² = 0.1388kg or 138.8g
B) In simple harmonic motion, velocity is given as;
v(t) = vmax Sin (ωt + Φ)
It is from the derivative of;
v(t) = -Aω Sin (ωt + Φ)
So comparing the two equations of v(t), we can see that ;
vmax = Aω
Vmax = 7 x 10.5672 = 73.97 cm/s
Answer:
is constant
Explanation:
Energy cannot be destroyed or created, but can transfer from places to places and in different forms.
It's dependent on the mass. You can fimd the force needed using the formula F = ma. Where F is force, m is mass of the cart and a is the acceleration (0.9m/s^2). The heavier it is the more force you are going to need. Remember unit of force is N