The energy stored in a capacitor is
E = (1/2) · (capacitance) · (voltage)²
E = (1/2) · (6 x 10⁻⁶ F) · (12 V)²
E = (3 x 10⁻⁶ F) · (144 V²)
<em>E = 4.32 x 10⁻⁴ Joule</em>
(That's 0.000432 of a Joule)
Find the amount of work that the spring does. This can be found using the equation 1/2kx^2. Then, you must set that equal to the amount of kinetic energy the car has. This is possible thanks to the work-energy theorem.
1/2kx^2 = 1/2mv^2
Solve to find velocity. Remember, the spring is displaced .15 m, not 15!
To find the acceleration, use F = ma. The force being applied to the car is kx, and you know the mass. You do the math.
For problem C I don't know, haven't done that yet in my class. Sorry!
Answer:
e = 1.21 mV
Explanation:
given,
length of rod = 10 m
height of drop = 4.89 m
Earth’s magnetic field = 12.4 µT
acceleration of gravity = 9.8 m/s²
velocity of the beam


v = 9.79 m/s
emf of the beam
e = B l v
e = 12.4 x 10⁻⁶ x 9.79 x 10
e = 1.21 x 10⁻³ V
e = 1.21 mV
Answer:
magnification = - 30
overall magnification = -240
Explanation:
given data
Focal length of microscope objective f = 0.150 cm
Object distance from microscope objective do = 0.155 cm
magnification by eyepiece = 8 ×
to find out
What magnification is produced and overall magnification
solution
we consider here Image distance from microscope objective is = di
so that
Magnification produced by objective will be = - 
so we find here di by given equation that is
..................1
di = 4.65 cm
so that magnification by object will be
magnification = - 
magnification = - 
magnification = - 30
and
overall magnification will be
overall magnification = magnification by objective × magnification by eyepiece ........................2
overall magnification = -30 × 8
overall magnification = -240