Answer:
C₁₁H₁₂NO₄
Explanation:
In order to determine the empirical formula of doxycycline, we need to follow a series of steps.
Step 1: Determine the centesimal composition
C: 59.5 mg/100 mg × 100% = 59.5%
H: 5.40 mg/100 mg × 100% = 5.40%
N: 6.30 mg/100 mg × 100% = 6.30%
O: 28.8 mg/100 mg × 100% = 28.8%
Step 2: Divide each percentage by the atomic mass of the element
C: 59.5 /12.0 = 4.96
H: 5.40/1.00 = 5.40
N: 6.30/14.0 = 0.450
O: 28.8/16.0 = 1.80
Step 3: Divide all the numbers by the smallest one
C: 4.96/0.450 = 11
H: 5.40/0.450 = 12
N: 0.450/0.450 = 1
O: 1.80/0.450 = 4
The empirical formula of doxycycline is C₁₁H₁₂NO₄
Answer:
The molar mass of the metal is 54.9 g/mol.
Explanation:
When we work with gases collected over water, the total pressure (atmospheric pressure) is equal to the sum of the vapor pressure of water and the pressure of the gas.
Patm = Pwater + PH₂
PH₂ = Patm - Pwater = 1.0079 bar - 0.03167 bar = 0.9762 bar
The pressure of H₂ is:

The absolute temperature is:
K = °C + 273 = 25°C + 273 = 298 K
We can calculate the moles of H₂ using the ideal gas equation.

Let's consider the following balanced equation.
M(s) + H₂SO₄(aq) ⟶ MSO₄(aq) + H₂(g)
The molar ratio of M:H₂ is 1:1. So, 9.81 × 10⁻³ moles of M reacted. The molar mass of the metal is:

Answer:
0.3192 M
Explanation:
From the question given above, the following data were obtained:
Volume of stock solution (V1) = 5.32 mL Molarity of stock solution (M1) = 6 M
Volume of diluted solution (V2) = 100 mL
Molarity of diluted solution (M2) =?
We can obtain the molarity of the diluted solution by using the dilution formula as shown follow:
M1V1 = M2V2
6 × 5.32 = M2 ×100
31.92 = M2 × 100
Divide both side by 100
M2 = 31.92 / 100
M2 = 0.3192 M
Therefore, the molarity of the diluted solution is 0.3192 M.
The balanced equation would be 
<h3>Electrochemical equations</h3>
Zn reacts with Cu solution according to the following equation:

In the reaction,
is reduced according to the following: 
While Zn is oxidized according to the following: 
Thus, giving the overall equation of; 
More oxidation-reduction equations can be found here: brainly.com/question/13699873
#SPJ1
Answer:
hporntue dhdjehwgs r. rvegdyfuee
Explanation:
ehehrhrhrhrhrhrhr. dvdhdhrhrhehehr f fbdhehrgdgdhehd dbdh