Fusion occurs constantly on our sun, which produces most of its energy via the nuclear fusion of hydrogen into helium. Neither do fusion reactions produce the large amounts of dangerous radioactive waste that fission reactions do. That's why it's such a dreamy source of energy.
Answer:
2.17 e -14
Explanation:
A strong acid like HCl ionize 100 % in water so [H3O+] = 0.46 M
[OH-] = Kw / [H3O+]
= 1.0 e -14 / 0.46
= 2.17 e -14
Since the direction of particle displacement in electromagnetic waves is also perpendicular to the direction of motion, generating the waveform of visible light and other forms of electromagnetic radiation, they are also transverse waves.
In a transverse wave, the displacement is perpendicular to the direction of motion (at an angle of 90 degrees Celsius). The direction of displacement (up and down) in the case of the ocean wave is perpendicular to the direction of wave motion (horizontally along the water), making it a transverse wave.
How far a particle has moved from its original starting position, or, in the case of an ocean wave, how high or low the water is, is measured by its displacement or amplitude.
learn more about displacement here;
brainly.com/question/321442
#SPJ4
Answer:
The concentration of the solution is 1.364 molar.
Explanation:
Volume of perchloric acid = 29.1 mL
Mass of the solution = m
Density of the solution = 1.67 g/mL

Percentage of perchloric acid in 48.597 solution :70.5 %
Mass of perchloric acid in 48.597 solution :
= 
Moles of perchloric acid = 
In 29.1 mL of solution water is added and volume was changed to 250 mL.
So, volume of the final solution = 250 mL = 0.250 L (1 mL = 0.001 L)


The concentration of the solution is 1.364 molar.
Answer:
The final mass of sample is 1.3 g.
Explanation:
Given data:
Half life of H-3 = 12.32 years
Amount left for 15.0 years = 3.02 g
Final amount = ?
Solution:
First all we will calculate the decay constant.
t₁/₂ = ln² /k
t₁/₂ =12.32 years
12.32 y = ln² /k
k = ln²/12.32 y
k = 0.05626 y⁻¹
Now we will find the original amount:
ln (A°/A) = Kt
ln (3.02 g/ A) = 0.05626 y⁻¹ × 15.0 y
ln (3.02 g/ A) = 0.8439
3.02 g/ A = e⁰°⁸⁴³⁹
3.02 g/ A = 2.33
A = 3.02 g/ 2.33
A = 1.3 g
The final mass of sample is 1.3 g.