I don't know about it your answer will give another people
Answer:
Spring constant of the spring will be equal to 9.255 N /m
Explanation:
We have given mass m = 0.683 kg
Time taken to complete one oscillation is given T = 1.41 sec
We have to find the spring constant of the spring
From spring mass system time period is equal to
, here m is mass and K is spring constant
So 

Squaring both side


So spring constant of the spring will be equal to 9.255 N /m
They have the same velocity because their displacements (shortest line from point A to point B, which is a straight line) are the same and they meet at the same time.
Answer:
Kinetic Energy:120 x 15=1800
Explanation:
Answer:
Tension, T = 2038.09 N
Explanation:
Given that,
Frequency of the lowest note on a grand piano, f = 27.5 Hz
Length of the string, l = 2 m
Mass of the string, m = 440 g = 0.44 kg
Length of the vibrating section of the string is, L = 1.75 m
The frequency of the vibrating string in terms of tension is given by :





T = 2038.09 N
So, the tension in the string is 2038.09 N. Hence, this is the required solution.