1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
GarryVolchara [31]
3 years ago
7

A cylindrical vessel with water is rotated about its vertical axis with a constant angular velocity co. Find:

Physics
2 answers:
mash [69]3 years ago
7 0

Answer:

(a) The shape of the free surface of the water is a parabola of revolution as follows;

h(r) = h_0 + \frac{ \Omega^2}{2g} r^2

(b) The water pressure distribution over the bottom of the vessel is

 \rho \times g \times (h_0 + \frac{ \Omega^2}{2g} r^2)  where r is the distance from the axis.

Explanation:

To solve the question, we solve the Euler's equation of the form

\rho (\frac{\partial u}{\partial t} -\textbf{u} \times \textbf{\omega} ) = -\rho \textbf{u} \times \omega = -\bigtriangledown (p + \frac{1}{2} \rho \parallel \textbf{u}  \parallel^2) + \rho \textbf{g}ω) = -ρu×ω = - \nabla(P + \frac{1}{2}ρ ║u║²) + ρg

When in uniform rotation, we have

u = u_{\theta}\hat{e}_{\theta} , ω = \omega_z \hat{e}_{z} where u_{\theta} = rΩ and   \omega_z = 2Ω

Therefore, u × ω = 2·r·Ω²· \hat{e}_{r}

From which the radial component of the vector equation is given as

-2·p·r·Ω² = \frac{\partial P}{\partial r} - \frac{\rho}{2}\frac{d u_{\theta}^2}{dr}   = -\frac{\partial P}{\partial r} - \rho r\Omega^2

Therefore,

\frac{\partial P}{\partial r} = \rho r\Omega^2 = \rho \frac{u_{\theta}^2}{r}

Integrating gives

P(r, z) = \frac{ \rho \Omega^2}{2} r^2 +f_1(z)

By substituting the above into the z component of the equation of motion, we obtain;

\frac{dp}{dz} = -\rho g \Rightarrow \frac{df_1}{dz} = -\rho g \Rightarrow f_1(z) = -\rho g z+C_3

Therefore

P(r, z) = \frac{ \rho \Omega^2}{2} r^2 + -\rho g z+C_3

From the boundary conditions r = R and z = z_R, we find C₃ as follows

P(r = R, z = z_R)  = p_{atm}

Therefore  p_{atm} =  \frac{ \rho \Omega^2}{2} R^2 + -\rho g z_R+C_3

From which we have

P(r, z) -  p_{atm} =  \frac{ \rho \Omega^2}{2} r^2 + -\rho g z+C_3 -  (\frac{ \rho \Omega^2}{2} R^2 + -\rho g z_R+C_3)

P(r, z) -  p_{atm}  = \frac{ \rho \Omega^2}{2} (r^2 -R^2) -\rho g (z-z_R)

We note that at the surface, the interface between the air and the liquid

P = p_{atm}, the shape of the of the free surface of the water is therefore;

z_R-z =\frac{ \Omega^2}{2g} (R^2 -r^2),

Given that at r = 0 we have the height = h₀

Therefore, z_R-z =h_0 + \frac{ \Omega^2}{2g} r^2 = h(r)

The shape of the of the free surface of the water is a parabola of revolution.

(b) The water pressure distribution over the bottom of the vessel is given by

ρ × g × z  

= \rho \times g \times \frac{ \Omega^2}{2g} (R^2 -r^2) =  \rho \times g \times (h_0 + \frac{ \Omega^2}{2g} r^2)

Nataly [62]3 years ago
4 0

Answer:

Explanation:

The question is one that examine the physical fundamental of mechanics of a cylindrical vessel .

We would use the Euler' equation and some coriolis and centripetal force formula.

The fig below explains it.

You might be interested in
How do I answer this question
maria [59]

Answer:

what question

Explanation:

6 0
3 years ago
Read 2 more answers
Part complete Sound with frequency 1240 Hz leaves a room through a doorway with a width of 1.11 m . At what minimum angle relati
Sedbober [7]

Answer:

14.43° or 0.25184 rad

Explanation:

v = Speed of sound in air = 343 m/s

f = Frequency = 1240 Hz

d = Width in doorway = 1.11 m

Wavelength is given by

\lambda=\frac{v}{f}\\\Rightarrow \lambda=\frac{343}{1240}\\\Rightarrow \lambda=0.2766\ m

In the case of Fraunhofer diffraction we have the relation

dsin\theta=\lambda\\\Rightarrow \theta=sin^{-1}\frac{\lambda}{d}\\\Rightarrow \theta=sin^{-1}\frac{0.2766}{1.11}\\\Rightarrow \theta=14.43^{\circ}\ or\ 0.25184\ rad

The minimum angle relative to the center line perpendicular to the doorway will someone outside the room hear no sound is 14.43° or 0.25184 rad

6 0
3 years ago
Valence electron of the first 20 elements​
Dima020 [189]

Answer:

Hydrogen

1 valence electron

Helium

2 valence electrons

lithium

1 valence electrons

beryllium

2 valence electrons

boron

3 valence electrons

carbon

4 valence electrons

nitrogen

5 valence electrons

oxygen

6 valence electrons

flourine

7 valence electrons

neon

8 valence electrons

sodium

1 valence electron

magnesium

2 valence electrons

aluminum

3 valence electrons

silicon

4 valence electrons

phosphorus

5 valence electrons

4 0
2 years ago
Read 2 more answers
A transformer supplies 60 watts of power to a device that is rated at 20 volts. The primary coil is connected to a 120-volt ac s
Nataly [62]

Answer:

I = 0.5 A

Explanation:

Given: P=60 Watts, Voltage supply V = 120 Volts (for primary coil)

Solution:

we have P = V I

⇒ I = P /V = 60 Watts / 120 Volts

I = 0.5 A

4 0
3 years ago
The loudness of sound is determined by what?
baherus [9]
The amplitude of a sound<span> wave </span>determines<span> its </span>loudness<span> or volume. A larger amplitude means a louder </span>sound<span>, and a smaller amplitude means a softer </span><span>sound</span>
5 0
2 years ago
Read 2 more answers
Other questions:
  • Corita bounced a ball four times. She measured how high the ball bounced each time. She recorded her data in the table. Which bo
    9·2 answers
  • He lower the frequency of the wave the ____________ it will have.
    13·1 answer
  • How is a net electric charge produced​
    15·1 answer
  • A battery with an emf of 12.0 V shows a terminal voltage of 11.7 V when operating in a circuit with two lightbulbs, each rated a
    8·2 answers
  • Why do satellites in orbit fall to the ground? why dont they fly into space?
    15·1 answer
  • When saturated air is cooled what happens to its dew point
    12·1 answer
  • In a game of tug of war, a rope is pulled by a force of 182 N to the right and by a force of 108 N to the left. Calculate the ma
    5·1 answer
  • A cylindrical tank has a tight-fitting piston that allows the volume of the tank to be changed. The tank originally contains air
    7·1 answer
  • Identify and sketch all the external forces acting on the chair. Because the chair can be represented as a point particle of mas
    13·1 answer
  • What process builds organic molecules such as sucrose by taking water away?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!