Answer:
because it gives a complete thought
We know that:
p=mv
p=300kg*35m/s
p=10500Ns
Answer:
16.32 °C
Explanation:
We are given;
Mass of aluminum bowl; m_b = 0.25 kg
Mass of soup; m_s = 0.8 kg
Thus, formula to find the amount of heat energy for a temperature change of 27.6°C to 0°C is;
Q = (m_b•c_b•Δt) + (m_s•c_s•Δt)
Where;
c_b = 0.215 kcal/(kg•°C)
c_s = 1 kcal/(kg•°C)
ΔT = 27.6 - 0 = 27.6°C
Thus;
Q = (0.25 × 0.215 × 27.6) + (0.8 × 1 × 27.6)
Q = 23.5635 Kcal
Now, the energy that exits to be used to freeze the soup is;
Q' = 424 kJ - Q
Let's convert 424 KJ to Kcal
424 KJ = 424/4.184 Kcal = 101.3384 Kcal
Thus;
Q' = 101.3384 - 23.5635
Q' = 77.7749 Kcal
Amount of heat that's removed is given by;
Q_f = Q' - mL
Where;
m = m_s = 0.8 kg
L = 79.8 kcal/kg
Thus;
Q_f = 77.7749 - (0.8 × 79.8)
Q_f = 13.9349 Kcal
Then final temperature will be;
T_f = Q_f/((m_b•c_b) + (m_s•c_s))
T_f = 13.9349/((0.25 × 0.215) + (0.8 × 1))
T_f = 16.32 °C
The minimum frequency is

while the maximum frequency is

Using the relationship between frequency f of a wave, wavelength

and the speed of the wave v, we can find what wavelength these frequencies correspond to:


So, the wavelengths of the radio waves of the problem are within the range 188-545 m.
Ramsar has the highest level of natural radiation in the world.
Hot springs located in the Arkaroola Wilderness Sanctuary in Southern Australia are also credited with higher than normal radiation levels, due to spring water coming in contact with rocks rich in uranium and radon.