The answer is (A) hope it helps
Answer:
v = √2G
/ R
Explanation:
For this problem we use energy conservation, the energy initiated is potential and kinetic and the final energy is only potential (infinite r)
Eo = K + U = ½ m1 v² - G m1 m2 / r1
Ef = - G m1 m2 / r2
When the body is at a distance R> Re, for the furthest point (r2) let's call it Rinf
Eo = Ef
½ m1v² - G m1
/ R = - G m1
/ R
v² = 2G
(1 / R - 1 / Rinf)
If we do Rinf = infinity 1 / Rinf = 0
v = √2G
/ R
Ef = = - G m1 m2 / R
The mechanical energy is conserved
Em = -G m1
/ R
Em = - G m1
/ R
R = int ⇒ Em = 0
-- Toss a rock straight up. The kinetic energy you give it
with your hand becomes potential energy as it rises.
Eventually, when its kinetic energy is completely changed
to potential energy, it stops rising.
-- When you're riding your bike and going really fast, you come
to the bottom of a hill. You stop pedaling, and coast up the hill.
As your kinetic energy changes to potential energy, you coast
slower and slower. Eventually, your energy is all potential, and
you stop coasting.
-- A little kid on a swing at the park. The swing is going really fast
at the bottom of the arc, and then it starts rising. As it rises, the
kinetic energy changes into potential energy, more and more as it
swings higher and higher. Eventually it reaches a point where its
energy is all potential; then it stops rising, and begins falling again.
160 m/s because you start off with 10 and go up by 50*3 which is 150 then add that with the begging speed to achieve 160m/s.
Answer:
Electron shell
Nucleus
Neutrons
Explanation:
An atom is made up of three fundamental subatomic particles which are the protons, neutrons and electrons.
- Protons are the positively charged particles. Neutrons do not carry any charges.
- Both protons and neutrons are found in the tiny nucleus at the center of that atom.
- The electrons are negatively charged.
- They are found outside the nucleus in electronic shells.