Answer:
It is conserved
Explanation:
Converted to heat energy due to the friction caused by the box rubbing on the floor
Answer:
The equilibrium position for the third charge is 69.28 cm
Explanation:
Given;
q₁ = -5.00 x 10⁻⁹ C
q₂ = -2.00 x 10⁻⁹ C
q₃ = 15.00 x 10⁻⁹ C
distance between q₁ and q₂ = 40.0 cm = 0.4 m
(-q₁)--------------------------------------(-q₂)---------------------------------(+q₃)
At equilibrium the repulsive force between q₁ and q₂ must be equal to attractive force between q₂ and q₃
According to Coulomb's law, repulsive or attractive force between charges is calculated as;

where;
F is repulsive or attractive force between charges
K is Coulomb's constant = 8.99 x 10⁹ Nm²/c²
r₁ is the distance between q₁ and q₂
q₁, q₂ and q₃ are the charge
distance between q₂ and q₃, r₂ is calculated as;

Therefore, the equilibrium position for the third charge is 69.28 cm
The car’s velocity at the end of this distance is <em>18.17 m/s.</em>
Given the following data:
- Initial velocity, U = 22 m/s
- Deceleration, d = 1.4

To find the car’s velocity at the end of this distance, we would use the third equation of motion;
Mathematically, the third equation of motion is calculated by using the formula;

Substituting the values into the formula, we have;

<em>Final velocity, V = 18.17 m/s</em>
Therefore, the car’s velocity at the end of this distance is <em>18.17 m/s.</em>
<em></em>
Read more: brainly.com/question/8898885
The answer is 34 you have to add the numbers and divide them by how many numbers there are