This question provides us –
- Weight of
is = 47 g - Volume, V = 375 mL
__________________________________________
- Molar Mass of
–


<u>Using formula</u> –






- Henceforth, Molarity of the solution is = 1.7M
___________________________________________
Sorting is a method that could separate those materials
Examples include carbonated water (i.e. soda water); honey; sugar syrup (used in confectionery); supersaturated drug delivery systems. "SDDS"; and sodium acetate solutions prepared from 160 g NaOAc and 30 mL water.
First, you need to find:
One mole of

is equivalent to how many grams?
Well, for this you have to look up the periodic table. According to the periodic table:
The atomic mass of Calcium Ca = 40.078 g (See in group 2)
The atomic mass of <span>Chlorine Cl = 35.45 g (See in group 17)
</span>
As there are two atoms of Chlorine present in

, therefore, the atomic mass of

would be:
Atomic mass of

= Atomic mass of Ca + 2 * Atomic mass of Cl
Atomic mass of

= 40.078 + 2 * 35.45 = 110.978 g
Now,
110.978 g of

= 1 mole.
75.9 g of

=

= 0.6839 moles.
Hence,
The total number of moles in 75.9g of

= 0.6839 moles
According to <span>Avogadro's number,
1 mole = 1 * </span>

molecules
0.6839 moles = 0.6839 *

molecules =

molecules
Ans: Number of molecules in 75.9g of
=
molecules
-i
The best answer is "<span>High temperatures increase the activation energy of the reaction."
The Haber process is an exothermic reaction at room temperature. This means that the reaction actually favors the reverse reaction, especially when the temperature is increased. So why increase the reaction temperature?
The reason for this is that nitrogen is a very stable element. Therefore, more energy is needed to overcome the slow rate of reaction. So the reaction temperature must be low enough to favor a forward reaction, but high enough to speed up the reaction.</span>