Answer:
<h2>D) clapping hands </h2>
Explanation:
hope it's helpful
Answer: The entire water/ice solution is at the melting/freezing point, 32°F (0°C). Adding rock salt — or any substance that dissolves in water — disrupts this equilibrium.
Explanation: Hope this helps! Have a great day :)
The amount of W(OH)2 needed would be 448.126 g
<h3>Stoichiometric calculation</h3>
From the equation of the reaction:
W(OH)2 + 2 HCl → WCl2 + 2 H2O
The mole ratio of W(OH)2 to HCl is 1:2
Mole of 150g HCl = 150/36.461
= 4.11 moles
Equivalent mole of W(OH)2 = 4.11/2
= 2.06 moles
Mass of 2.06 moles W(OH)2 = 2.06 x 217.855
= 448.188g
More on stoichiometric calculations can be found here: brainly.com/question/8062886
In rubidium oxide - Rb₂O , the ions are Rb⁺ and O²⁻
Rb is a group one element with one valence electron. To become stable it loses its outer electron to gain a complete outer shell.
Electronic configuration of Rb is - 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 5s¹
Once it loses its valence electron the configuration is;
- 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶
The noble gas with this configuration is Krypton - Kr
Oxygen electron configuration is 1s² 2s² 2p⁴
Once it gains 2 electrons the configuration is - 1s² 2s² 3p⁶
The noble gas with this configuration is Neon - Ne