Answer:
λ = 2.38 × 10^(-7) m
Explanation:
We are given the work function for palladium as 503.7 kJ/mol.
Now let's convert this to KJ/electron.
We know from avogadro's number that;
1 mole of electron = 6.022 × 10^(23) electrons
Thus,
503.7 kJ/mol = 503.7 × 1/(6.022 × 10^(23)) = 8.364 × 10^(-22) KJ/electron = 8.364 × 10^(-19) J/electron
Formula for energy of a photon is;
E = hv
Where;
h is Planck's constant = 6.626 × 10^(-34) J.s
v is velocity
Now, v = c/λ
Where;
c is speed of light = 3 × 10^(8) m/s
λ is wavelength of light.
Thus;
E = hc/λ
Making λ the subject, we have;
λ = hc/E
λ = (6.626 × 10^(-34) × 3 × 10^(8))/(8.364 × 10^(-19))
λ = 2.38 × 10^(-7) m
It does not change the chemical in the composition of water. hope it helps
Answer:
4.1 moles
Explanation:
Applying
PV = nRT................ equation 1
Where P = pressure, V = volume, n = number of moles, R = molar gas constant, T = Temperature.
make n the subject of the equation
n = PV/RT.............. Equation 2
From the question,
Given: V = 35 L , P = 2.8 atm, T = 15 °C = (15+273) = 288 K, R = 0.083 L.atm/K.mol
Substitute these values into equation 2
n = (35×2.8)/(0.083×288)
n = 4.1 moles
The concentration may be expressed as % m/m, this is the mass of ions in 100 mass units of solution, whose formula is:
% m/m = [mass of ions / mass of solution]*100
Then,
%m/m = [8.5*10^ -3 grams of calcium ions] / [490 grams of solution] * 100 =
% m/m = 1.74 * 10^ -5 %
Answer: 1.74 * 10 ^ -5 %
<span>The </span>elements are arranged<span> in order of increasing atomic number. Vertical columns(called groups) contain </span>elements with similar properties. Horizontal rows called periods elements with<span> the same number of atomic orbitals(That's why Hydrogen and Helium are separated from the rest of the table).
Hope this helps:)</span>