Answer:
D. Positively charged particles
Explanation:
Negatively charged particles are attracted to positively charged particles and repelled against negatively charged particles
It cools down i am 100 percent sure it cools down
Explanation:
Depression in Freezing point
= Kf × i × m
where m is molality , i is Van't Hoff factor, m = molality
Since molality and Kf remain the same
depression in freezing point is proportional to i
i= 2 for CuSO4 ( CuSO4----------> Cu+2 + SO4-2
i=1 for C2h6O
i= 3 for MgCl2 ( MgCl2--------> Mg+2+ 2Cl-)
So the freezing point depression is highest for MgCl2 and lowest for C2H6O
so freezing point of the solution = freezing point of pure solvent- freezing point depression
since MgCl2 has got highest freezing point depression it will have loweest freezing point and C2H6O will have highest freezing point
Answer:
The density of Lithium β is 0.5798 g/cm³
Explanation:
For a face centered cubic (FCC) structure, there are total number of 4 atoms in the unit cell.
we need to calculate the mass of these atoms because density is mass per unit volume.
Atomic mass of Lithium is 6.94 g/mol
Then we calculate the mass of four atoms;
⇒next, we estimate the volume of the unit cell in cubic centimeter
given the edge length or lattice constant a = 0.43nm
a = 0.43nm = 0.43 X 10⁻⁹ m = 0.43 X 10⁻⁹ X 10² cm = 4.3 X 10⁻⁸cm
Volume of the unit cell = a³ = (4.3 X 10⁻⁸cm)³ = 7.9507 X 10⁻²³ cm³
⇒Finally, we calculate the density of Lithium β
Density = mass/volume
Density = (4.6097 X 10⁻²³ g)/(7.9507 X 10⁻²³ cm³)
Density = 0.5798 g/cm³