Answer:
a) After the balloon inflated after 440 uL of dropwise due to the reaction of 1-Decene and the solution in the conical vial. b)
⇒ 16
c) No
was not the limiting reactant.
Explanation:
Generally, hydrogenation is the chemical reaction between a compound or element and molecular hydrogen in the presence of catalysts such as platinum.
a) After the balloon inflated after 440 uL of dropwise 1-Decene solution was added due to the reaction between 1-Decene and the solution in the conical vial.
b)
⇒ 16
c)
was not the limiting reactant based on the mol to mol ratio of
and decane which is 1:1. Therefore, if 0.8 mol of decane was produced then 0.8 mol of
would also be produced.
No, they do not. Hope I helped! :)
Answer:
Pray to ur God to give you some peace
Explanation:
and then listen to some peace full music
I only know that
Answer:
oxygen is limiting reactant
Explanation:
Given data:
Mass of hydrogen = 16.7 g
Mass of oxygen = 15.4 g
Limiting reactant = ?
Solution:
Chemical equation:
2H₂ + O₂ → 2H₂O
Number of moles of hydrogen:
Number of moles = mass/ molar mass
Number of moles = 16.7 g/ 2 g/mol
Number of moles = 8.35 mol
Number of moles of oxygen:
Number of moles = mass/ molar mass
Number of moles = 15.4 g/ 32 g/mol
Number of moles = 0.48 mol
Now we will compare the moles of both reactant with product,
H₂ : H₂O
2 : 2
8.35 : 8.35
O₂ : H₂O
1 : 2
0.48 : 2×0.48 = 0.96 mol
The number of moles of water produced by oxygen are less so it will limiting reactant.
An experiment that would show that intramolecular forces are stronger than intermolecular forces will be heating a block of ice in a sealed container then allowing it to change to steam.
Intramolecular forces are the forces of attraction that hold atoms together within a molecule. Intramolecular forces require a high amount of energy to splits atoms or molecules in a chemical bonding.
Intermolecular forces are weaker forces of attraction that occur between molecules. They require lesser energy to splits molecules compared to intramolecular forces.
An experiment that would show that intramolecular forces are stronger than intermolecular forces will be heating a block of ice in a sealed container then allowing it to change to steam.
In the process, the energy required to change the state from ice to steam water is more than intermolecular forces.
Thus, we can conclude that this experiment shows that the intramolecular forces are stronger than the intermolecular forces.
Learn more about Intramolecular forces here:
brainly.com/question/13588164