Answer is: 25,06 kJ of energy must be added to a 75 g block of ice.
ΔHfusion(H₂O) = 6,01 kJ/mol.
T(H₂O) = 0°C.
m(H₂O) = 75 g.
n(H₂O) = m(H₂O) ÷ M(H₂O).
n(H₂O) = 75 g ÷ 18 g/mol.
n(H₂O) = 4,17 mol.
Q = ΔHfusion(H₂O) · n(H₂O)
Q = 6,01 kJ/mol · 4,17 mol
Q = 25,06 kJ.
Answer:
It is the intermolecular forces acting between the molecules that cause attractions between them making them liquids or solids. The strength of Van der Waals forces depends primarily on the number of electrons in total in the molecule, so larger molecules will have higher boiling points.
Explanation:
Grinding pepper. It is still pepper.
I hope this helps!
Answer: Group 1 would have the lowest electronegativity values.
Explanation:
Electronegativity is the power of an atom in a molecule to attract electrons. It is also synonymous with the oxidizing ability or non-metallic character of elements.
Generally, across a given period from left to right, electronegativity increases due to increasing nuclear charge and decreasing atomic radius ( or atomic size ). This is because there is a greater tendency for a smaller atom with higher nuclear attraction to attract electrons than a larger atom with a lower nuclear attraction due to the shielding effect of the nuclear attraction by the inner shell electrons on the outermost electrons in the larger atom.
Also, down a particular group, electronegativity generally decreases due to increasing atomic radius/size.
This is why metals are generally electropositive ( lose electrons ) and non-metals are electronegative ( gain electrons ) as they are both found more on the left and right sides of the periodic table respectively.