Answer:
6400 W (or) 6.4 KW
Explanation:
Formula we use,
→ P = I²R
Let's solve for the power of device,
→ P = I²R
→ P = (8)² × 100
→ P = 64 × 100
→ [ P = 6400 W ]
Hence, the power is 6400 W.
A )voltage
(i.e differance in electricity field)
Answer: 
Explanation:
Given
Distance putty has to travel is 3.5 m
The initial speed of putty is 9.50 m/s
Using equation of motion to determine the velocity of putty just before it hits ceiling


So, the velocity of putty just before hitting is 
Total distance: 56 meters. Magnitude and direction of displacement: 20 meters South.
Explanation:
The term distance refers to space between one point and other, or the total space a body or object covered while moving. In the case presented, this can be calculated by adding the partial distances given. This means the total distance is 56 meters as 26 meters + 18 meters + 12 meters = 56 meters.
On the other hand, displacement considers the distance from the initial position to the final position, and the direction of movement. This means partial distances should not be added but each movement should be considered according to the direction. The process is shown below:
-The first movement was 26 meters southward; this means by the end of this movement the distance between the initial position was 26 meters south.
- The second movement was 18 northward; this means the kayaker moved 18 meters towards the position. This changes the displacement to 8 meters South as 26 meters south - 18 meters north = 8 meters to the South.
-The last movement was 12 meters sound; this means the kayaker increased the distance from the original position 8 meters to the South + 12 meters to the South = 20 meters South (total displacement.)
"Multiple accelerations" is a puzzling phrase, and I'd be curious to understand it
better. Sadly however, you haven't explained it at all.
If the multiple accelerations are the accelerations of multiple objects, then
the net force on each object is the product of (its mass) x (its acceleration).
If the multiple accelerations are the acceleration of one object at different times,
then at any instant of time, the net force on the object is the product of (its mass) x
(its acceleration at that instant).