The marbles that are 'more energetic' fall out of the tray, in the same way particles have enough energy to escape and turn into a gas.
Answer:
Established a government for the Northwest Territory, outlined the process for admitting a new state to the Union, and guaranteed that newly created states would be equal to the original thirteen states
Explanation:
Goooogle, so I hope this helps somewhat
Also, isn't this a History question? You put physics lol
Explanation:
Given that,
Mass, m = 0.08 kg
Radius of the path, r = 2.7 cm = 0.027 m
The linear acceleration of a yo-yo, a = 5.7 m/s²
We need to find the tension magnitude in the string and the angular acceleration magnitude of the yo‑yo.
(a) Tension :
The net force acting on the string is :
ma=mg-T
T=m(g-a)
Putting all the values,
T = 0.08(9.8-5.7)
= 0.328 N
(b) Angular acceleration,
The relation between the angular and linear acceleration is given by :

(c) Moment of inertia :
The net torque acting on it is,
, I is the moment of inertia
Also, 
So,

Hence, this is the required solution.
By abrasion, the sediment in the wind promotes erosion. The wind scatters sand, sand dunes created. When clay and silt are deposited by the wind. The presence of vegetation ground helps stop wind erosion.
<h3>What is an erosion ?</h3>
Earthen materials were worn away during erosion, a geological process in which they are moved by water or wind. Weathering, a related process that does not involve movement, dissolves and breaks down rock.
<h3>What is caused by erosion?</h3>
The process through which the Earth's surface ages is known as erosion. Natural forces like wind or glacier ice can create erosion. But when it comes to altering the Earth, nothing compares to a slow, constant movement of water, as anyone who has ever seen a picture of a Grand Canyon will attest.
To know more about Erosion visit:
brainly.com/question/3852201
#SPJ13
Hi there!
We can begin by finding the acceleration of the block.
Use the kinematic equation:

The block starts from rest, so:

Now, we can do a summation of forces of the block using Newton's Second Law:

mb = mass of the block
T = tension of string
Solve for tension:

Now, we can do a summation of torques for the wheel:

Rewrite:

We solved that the linear acceleration is 1.5 m/s², so we can solve for the angular acceleration using the following:

Now, plug in the values into the equation:
