Answer:
Work done, W = 6 J
Explanation:
It is given that,
Force of gravity acting on the book, weight of the book is 15 N
We need to find the work done in lifting the book straight up for a distance of 0.4 meters.
The weight of the book is acting in downward direction and the book is lifted straight up, it means angle between them is 180 degrees. Work done is given by :

So, the magnitude of work done in lifting the book is 6 joules.
The answer would be '<span>The plane of a Foucault pendulum appears to shift its orientation' because it is an experiment to demonstrate the rotation of the earth.
Hope this helps.</span>
The temperature of 20°C is equal to 68.0<span>°F</span>
Answer:
Atomic Size and Mass:
convert given density to kg/m^3 = 8900kg/m^3 2) convert to moles/m^3 (kg/m^3 * mol/kg) = 150847 mol/m^3 (not rounding in my actual calculations) 3) convert to atoms/m^3 (6.022^23 atoms/mol) = 9.084e28 atoms/m^3 4) take the cube root to get the number of atoms per meter, = 4495309334 atoms/m 5) take the reciprocal to get the diameter of an atom, = 2.2245e-10 m/atom 6) find the mass of one atom (kg/mol * mol/atoms) = 9.7974e-26 kg/atom Young's Modulus: Y=(F/A)/(dL/L) 1) F=mg = (45kg)(9.8N/kg) = 441 N 2) A = (0.0018m)^2 = 3.5344e-6 m^2 3) dL = 0.0016m 4) L = 2.44m 5) Y = 1.834e11 N/m^2 Interatomic Spring Stiffness: Ks,i = dY 1) From above, diameter of one atom = 2.2245e-10 m 2) From above, Y = 1.834e11 N/m^2 3) Ks,i = 40.799 N/m (not rounding in my actual calculations) Speed of Sound: v = ωd 1) ω = √(Ks,i / m,a) 2) From above, Ks,i = 40.799 N/m 3) From above, m,a = 9.7974e-26 kg 4) ω=2.0406e13 N/m*kg 5) From above, d=2.2245e-10 m 6) v=ωd = 4539 m/s (not rounding in actual calculations) Time Elapsed: 1) length sound traveled = L+dL = 2.44166 m 2) From above, speed of sound = 4539 m/s 3) T = (L+dL)/v = 0.000537505 s