1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
grigory [225]
3 years ago
7

What kind of energy is stored when you squeeze a mattress?

Physics
2 answers:
Umnica [9.8K]3 years ago
7 0

Answer: When you squeeze a mattress, and you release it, you can see that return to the original shape. So, when you are squeezing it, the mattress "want" to return to the original shape. The mattress does it by storing elastic energy, and when you stop squeezing it, uses the elastic energy to return to the original shape.

so the energy stored is elastic energy.

yuradex [85]3 years ago
4 0
Elastic Energy is stored in it.
You might be interested in
HELP ASAP TIMED TEST
balu736 [363]

Answer:

<em>Correct choice: b 4H</em>

Explanation:

<u>Conservation of the mechanical energy</u>

The mechanical energy is the sum of the gravitational potential energy GPE (U) and the kinetic energy KE (K):

E = U + K

The GPE is calculated as:

U = mgh

And the kinetic energy is:

\displaystyle K=\frac{1}{2}mv^2

Where:

m = mass of the object

g = gravitational acceleration

h = height of the object

v = speed at which the object moves

When the snowball is dropped from a height H, it has zero speed and therefore zero kinetic energy, thus the mechanical energy is:

U_1 = mgH

When the snowball reaches the ground, the height is zero and the GPE is also zero, thus the mechanical energy is:

\displaystyle U_2=\frac{1}{2}mv^2

Since the energy is conserved, U1=U2

\displaystyle mgH=\frac{1}{2}mv^2    \qquad\qquad [1]

For the speed to be double, we need to drop the snowball from a height H', and:

\displaystyle mgH'=\frac{1}{2}m(2v)^2

Operating:

\displaystyle mgH'=4\frac{1}{2}m(v)^2 \qquad\qquad [2]

Dividing [2] by [1]

\displaystyle \frac{mgH'}{mgH}=\frac{4\frac{1}{2}m(v)^2}{\frac{1}{2}m(v)^2}

Simplifying:

\displaystyle \frac{H'}{H}=4

Thus:

H' = 4H

Correct choice: b 4H

4 0
3 years ago
Two skiers arrive at the bottom of a ramp travelling at the same speed. Friction may be ignored in this problem. One skier is an
inysia [295]

Answer:

Both will reach to same height

Explanation:

Here we can see that friction is to be ignored

so we can say that work done by all the non conservative forces is change in mechanical energy

Since all non conservative forces here is zero

so mechanical energy is conserved here

so here we can say that sum of initial kinetic energy and potential energy = sum of final kinetic energy and potential energy

So we will have

\frac{1}{2}mv^2 = mgH

now maximum height is given as

H = \frac{v^2}{2g}

so here we can say that greatest height will be independent of the mass so they both will reach at same height

6 0
3 years ago
At what distance will a 80 W lightbulb have the same apparent brightness as a 120 W bulb viewed from a distance of 40 m
liq [111]

Answer:

32.6mm

Explanation:

Using area of a sphere(bulb) = 4πr²

So A is proportional to radius²

So the Energy will be proportional to r²

But 120/80 = 1.5 is the energy factor so

Using

1.5/d² = 1/r²

1.5/40²= 1/r^2

r = √( 40²/ 1.5)

r = 32.6m

4 0
3 years ago
The tension of a guitar string is increased by 40%. By what factor odes the fundamental frequency of vibration change? a. 1.13 b
bogdanovich [222]

Answer:

<h3> b. 1.18</h3>

Explanation:

The fundamental frequency in string is expressed as;

F1 = 1/2L√T/m .... 1

L is the length of the string

T is the tension

m is the mass per unit length

If the tension is increased by 40%, the new tension will be;

T2 = T + 40%T

T2 = T + 0.4T

T2 = 1.4T

The new fundamental frequency will be;

F2 = 1/2L√1.4T/m ..... 2

Divide 1 by 2;

F2/F = (1/2L√1.4T/m)/1/2L√T/m)+

F2/F = √1.4T/m ÷ √T/m

F2/F = √1.4T/√m ×√m/√T

F2/F = √1.4T/√T

F2/F = 1.18√T/√T

F2/F = 1.18

F2 = 1.18F

Hence the fundamental frequency of vibration changes by a factor of 1.18

8 0
3 years ago
The electric field of a sinusoidal electromagnetic wave obeys the equation E = (375V /m) cos[(1.99× 107rad/m)x + (5.97 × 1015rad
kenny6666 [7]

Answer:

a)  v = 2,9992 10⁸ m / s , b)  Eo = 375 V / m ,  B = 1.25 10⁻⁶ T,

c)     λ = 3,157 10⁻⁷ m,   f = 9.50 10¹⁴ Hz ,  T = 1.05 10⁻¹⁵ s , UV

Explanation:

In this problem they give us the equation of the traveling wave

        E = 375 cos [1.99 10⁷ x + 5.97 10¹⁵ t]

a) what the wave velocity

all waves must meet

        v = λ f

In this case, because of an electromagnetic wave, the speed must be the speed of light.

        k = 2π / λ

        λ = 2π / k

        λ = 2π / 1.99 10⁷

        λ = 3,157 10⁻⁷ m

        w = 2π f

        f = w / 2 π

        f = 5.97 10¹⁵ / 2π

        f = 9.50 10¹⁴ Hz

the wave speed is

        v = 3,157 10⁻⁷   9.50 10¹⁴

        v = 2,9992 10⁸ m / s

b) The electric field is

           Eo = 375 V / m

to find the magnetic field we use

           E / B = c

           B = E / c

            B = 375 / 2,9992 10⁸

            B = 1.25 10⁻⁶ T

c) The period is

           T = 1 / f

            T = 1 / 9.50 10¹⁴

            T = 1.05 10⁻¹⁵ s

the wavelength value is

          λ = 3,157 10-7 m (109 nm / 1m) = 315.7 nm

this wavelength corresponds to the ultraviolet

5 0
3 years ago
Other questions:
  • Unless otherwise posted, what is the speed limit in a school zone? florida
    8·1 answer
  • Calculate the force constant (in N/m) of its plunger's spring if you must compress it 0.160 m to drive the 0.0540 kg plunger to
    11·1 answer
  • Why do most objects tend to contain nearly equal numbers of positive and negative charges?
    5·2 answers
  • Two men decide to use their cars to pull a truck stuck in mud. They attach ropes and one pulls with a force of 821 N at an angle
    12·1 answer
  • the distance of the earth to the sun is 1.5x10^11 m and one year is 365days if the distance to the sun increased six time the in
    14·1 answer
  • Alice drops a rock to a well. She hears the splash of the rock 4.1s later. The speed of sound is 340m/s. How deep is the well
    14·1 answer
  • A 2120 kg car traveling at 13.4 m/s collides with a 2810 kg car that is initally at rest at a stoplight. The cars stick together
    14·1 answer
  • An object travels 8 meters in the 1st second of travel, 8 meters again during the 2nd second of travel, and 8 meters again durin
    10·1 answer
  • Momentum is mass times velocity, so another way to think of momentum is ____ in motion.
    9·1 answer
  • if length of the spring is doubled, what will happen to its time period? if mass of the spring is doubled and spring constant wi
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!