Answer:
a) K = 49.5 J b) k = 1378 N / m c) ΔE = 34 J d) μ = 0.399
Explanation:
For this exercise we will use the concepts of energy
a) The initial kinetic energy is
K = ½ m v²
K = ½ 3.96 5²
K = 49.5 J
b) let's use energy conservation
Em₀ = K = ½ m v²
= Ke = ½ k x²
Em₀ = 
½ m v² = ½ k x²
k = m v² / x²
k = 3.96 5² / 0.268²
k = 1378 N / m
c) Let's calculate the final energy of the spring
= Ke = ½ k x²
= ½ 1378 0.15²
= 15.5 J
The initial energy is the kinetics of the block
Em₀ = 49.5 J
The lost energy is the difference with the initial
ΔE =
- Em₀
ΔE = 15.5 - 49.5
ΔE = - 34 J
the negative sign means that the energy dissipates
d) For this part we use the concept of work
W = F d cos θ = ΔK
In this case the force is the friction force that always opposes displacement, so the angle 180 ° and cos 180 = -1
W = -fr d = ΔK
The force of friction is
fr = μ N
With Newton's second law
N-w = 0
N = W = mg
Let's calculate
-μ mg d = Kf -K₀o
μ = K₀ / mgd
μ = 49.5 / (3.96 9.8 3.20)
μ = 0.399
Answer:
a. TRUE
Explanation:
When a satellite is launched to orbit around earth, it has to produce its own artificial gravity by performing rotations. The frequency of this rotation is given by the following formula:
f = √[ac/4πR²]
where,
f = frequency
ac = centripetal acceleration
R = Radius of the satellite
Therefore, it is clear from this formula that the frequency of rotation of the satellite is independent of its height above the surface of earth. So, the correct option is:
<u>a. TRUE</u>
Answer:
The kinetic energy of the cell phone is 9J
Explanation:
The kinetic energy is the energy possessed by a body by virtue of motion.
The kinetic energy is expressed as
KE= 1/2m(v)²
Given data
Mass of cell phone m= 80g--to kg=80/1000= 0.08kg
Velocity of cell phone v= 15m/s
Substituting our given data we have
KE= 1/2*0.08(15)²
KE= (0.08*225)/2
KE=18/2
KE= 9J
the control would be A. the bottle with 0% concentration, because you're not changing anything.
Answer:
18 m
Explanation:
G = Gravitational constant
m = Mass of planet = 
= Density of planet
V = Volume of planet assuming it is a sphere = 
r = Radius of planet
Acceleration due to gravity on a planet is given by

So,

Density of other planet = 
Radius of other planet = 

Since the person is jumping up the acceleration due to gravity will be negative.
From kinematic equations we have

On the other planet

The man can jump a height of 18 m on the other planet.