Answer:
W = 2.74 J
Explanation:
The work done by the charge on the origin to the moving charge is equal to the difference in the potential energy of the charges.
This is the electrostatic equivalent of the work-energy theorem.

where the potential energy is defined as follows

Let's first calculate the distance 'r' for both positions.

Now, we can calculate the potential energies for both positions.

Finally, the total work done on the moving particle can be calculated.

Answer:
Yes it does
Explanation:
Gravity is pushing down on the pencil but the coffee mug is also pushing the pencil up with the same amount of force so they both don't move
Answer:
Velocity, v = 0.239 m/s
Explanation:
Given that,
The distance between two consecutive nodes of a standing wave is 20.9 cm = 0.209 m
The hand generating the pulses moves up and down through a complete cycle 2.57 times every 4.47 s.
For a standing wave, the distance between two consecutive nodes is equal to half of the wavelength.

Frequency is number of cycles per unit time.

Now we can find the velocity of the wave.
Velocity = frequency × wavelength
v = 0.574 × 0.418
v = 0.239 m/s
So, the velocity of the wave is 0.239 m/s.
Answer: 0.333 h
Explanation:
This problem can be solved using the <u>Radioactive Half Life Formula</u>:
(1)
Where:
is the final amount of the material
is the initial amount of the material
is the time elapsed
is the half life of the material (the quantity we are asked to find)
Knowing this, let's substitute the values and find
from (1):
(2)
(3)
Applying natural logarithm in both sides:
(4)
(5)
Clearing
:
(6)
Finally:
This is the half-life of the Bismuth-218 isotope
Answer:
Part a)

Part B)
percentage increase is
%
Explanation:
Part a)
As we know that the beat frequency is

after increasing the tension the beat frequency is decreased and hence the tension in string B will increase
So we have


Part B)
percentage increase in the tension of the string will be given as


now we have

so we have


so we have

percentage increase is
