Answer:


Explanation:
From the question we are told that
Initial velocity of 60 m/s
Wind speed 
Generally Resolving vector mathematically
   
Generally the equation Pythagoras theorem is given mathematically by



Therefore Resultant velocity (m/s)

b)Resultant direction
Generally the equation for solving Resultant direction

Therefore


 
        
             
        
        
        
Answer:
a) speed when Jack sees the pot : 12.92 meters per second
b) height difference 163.115 meters
Explanation:
First to calculate te initial speed we use the acceleration formula:
a= v1-v0/t 
Acceleration being gravity's acceleration (9.8 m/s^2) 
v1 being the speed when Jill sees the pot
v0 when Jack sees it
and t the time between
Solving for v0 it would be
v1 - a*t = v0
replacing

For the second question we use the position formula setting y0 and t0 as the position and time when jack sees the pot. (and setting the positive axis downward I.E. one meter below jack would be 1m not -1m)
The formula is

replacing

 
        
             
        
        
        
Answer:
5m/8
Explanation:
Function T gives the time the Hobbits have to prepare for the attack, T(k), in minutes, as a function of troll's distance, k, in meters.
Function V gives visibility from the watchtower, V(m), in meters, as a function of the height of the watchtower, m, in meters.
Therefore, T(V(m)) will give the time the Hobbits have to prepare for the troll attack as a function of the height, m, of the watchtower.
We can input m into function V to obtain the visibility from watchtower, V(m), in meters. Since visibility indicates the distance you can see, this also gives the distance of the trolls. This can then be input into function T to obtain the time that the Hobbits have to prepare for a troll attack.
Let's find T(V(m)) by substituting the formula for V(m) into function T as shown below.
T(V(M))=T(50m)
=50m/80
We can simplify this as follows:
=50m/80
=5m/8
 
        
             
        
        
        
Answer:
4
Explanation:
It has 8 O atoms and 4 O2(g) molecules