1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olasank [31]
3 years ago
8

If the perimeter of a square is 3 feet how many inches long is each side

Mathematics
2 answers:
ludmilkaskok [199]3 years ago
8 0
1.5 feet by 1.5 feet
Which is 18 inches in each side
Bas_tet [7]3 years ago
6 0
The perimeter is going to be 12. hope that helped
You might be interested in
I'm reasking a previous question to make it more clear. This is a Linear Equation that I must solve. It includes fractions (the
Ugo [173]

Assuming the equation is:

\frac{x}{2}-\frac{10x-25}{10}=3(x+3)-(x-14)


When fractions involve numeric denominators, the fractions can be removed by multiplying (both sides) by the LCM of the denominators.


Here the denominators are 2 and 10, hence the LCM is 10.


Multiply by 10 on both sides, not forgetting to distribute when multiplying on the right side:

10\frac{x}{2}-10\frac{10x-25}{10}=10*3(x+3)-10(x-14)

simplify, remember that there are always implied parentheses around numerators and denominators:

5x-(10x-25)=30(x+3)-10(x-14)

Now, distribute, i.e. remove parentheses and distribute:

5x-10x+25=30x+90-10x+140

Simplify

-5x+25=20x+230

transpose terms

25-230=20x+5x

solve

x=-205/25=-41/5


In this particular case, we can also take advantage of the term

(10x-25)/10=5(2x-5)/10=(2x-5)/2 which greatly simplifies the solution process, because the LCM will then be 2 instead of 10.

If we do that, the solution will be:

Multiply by 2 on both sides, not forgetting to distribute when multiplying on the right side:

\frac{x}{2}-\frac{10x-25}{10}=3(x+3)-(x-14)

simplify, remember that there are always implied parentheses around numerators and denominators:

2\frac{x}{2}-2\frac{2x-5}{2}=2*3(x+3)-2(x-14)

x-(2x-5)=6(x+3)-2(x-14)

Now, distribute, i.e. remove parentheses and distribute:

x-2x+5=6x+18-2x+28

Simplify

-x+5=4x+46

solve

5-46=4x+x

-41=5x

x=-41/5

with the same results.

7 0
3 years ago
Read 2 more answers
HOW AM I SUPPOSED TO DO THIS IF YOU DONT KNOW HOW TO DO THIS DONT HELP AN GET ME SOMEONE THAT WILL someone help me
Romashka-Z-Leto [24]
Just take each number in the first table and divide it by the total then x by 100

Eg the first one 24/120 x 100 = 20%
6 0
2 years ago
Prove that
Pani-rosa [81]
Let's start from what we know.

(1)\qquad\sum\limits_{k=1}^n1=\underbrace{1+1+\ldots+1}_{n}=n\cdot 1=n\\\\\\
(2)\qquad\sum\limits_{k=1}^nk=1+2+3+\ldots+n=\dfrac{n(n+1)}{2}\quad\text{(arithmetic  series)}\\\\\\
(3)\qquad\sum\limits_{k=1}^nk\ \textgreater \ 0\quad\implies\quad\left|\sum\limits_{k=1}^nk\right|=\sum\limits_{k=1}^nk

Note that:

\sum\limits_{k=1}^n(-1)^k\cdot k^2=(-1)^1\cdot1^2+(-1)^2\cdot2^2+(-1)^3\cdot3^2+\dots+(-1)^n\cdot n^2=\\\\\\=-1^2+2^2-3^2+4^2-5^2+\dots\pm n^2

(sign of last term will be + when n is even and - when n is odd).
Sum is finite so we can split it into two sums, first S_n^+ with only positive trems (squares of even numbers) and second S_n^- with negative (squares of odd numbers). So:

\sum\limits_{k=1}^n(-1)^k\cdot k^2=S_n^+-S_n^-

And now the proof.

1) n is even.

In this case, both S_n^+ and S_n^- have \dfrac{n}{2} terms. For example if n=8 then:

S_8^+=\underbrace{2^2+4^2+6^2+8^2}_{\frac{8}{2}=4}\qquad\text{(even numbers)}\\\\\\
S_8^-=\underbrace{1^2+3^2+5^2+7^2}_{\frac{8}{2}=4}\qquad\text{(odd numbers)}\\\\\\

Generally, there will be:

S_n^+=\sum\limits_{k=1}^\frac{n}{2}(2k)^2\\\\\\S_n^-=\sum\limits_{k=1}^\frac{n}{2}(2k-1)^2\\\\\\

Now, calculate our sum:

\left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\left|S_n^+-S_n^-\right|=
\left|\sum\limits_{k=1}^\frac{n}{2}(2k)^2-\sum\limits_{k=1}^\frac{n}{2}(2k-1)^2\right|=\\\\\\=
\left|\sum\limits_{k=1}^\frac{n}{2}4k^2-\sum\limits_{k=1}^\frac{n}{2}\left(4k^2-4k+1\right)\right|=\\\\\\

=\left|4\sum\limits_{k=1}^\frac{n}{2}k^2-4\sum\limits_{k=1}^\frac{n}{2}k^2+4\sum\limits_{k=1}^\frac{n}{2}k-\sum\limits_{k=1}^\frac{n}{2}1\right|=\left|4\sum\limits_{k=1}^\frac{n}{2}k-\sum\limits_{k=1}^\frac{n}{2}1\right|\stackrel{(1),(2)}{=}\\\\\\=
\left|4\dfrac{\frac{n}{2}(\frac{n}{2}+1)}{2}-\dfrac{n}{2}\right|=\left|2\cdot\dfrac{n}{2}\left(\dfrac{n}{2}+1\right)-\dfrac{n}{2}\right|=\left|n\left(\dfrac{n}{2}+1\right)-\dfrac{n}{2}\right|=\\\\\\


=\left|\dfrac{n^2}{2}+n-\dfrac{n}{2}\right|=\left|\dfrac{n^2}{2}+\dfrac{n}{2}\right|=\left|\dfrac{n^2+n}{2}\right|=\left|\dfrac{n(n+1)}{2}\right|\stackrel{(2)}{=}\\\\\\\stackrel{(2)}{=}
\left|\sum\limits_{k=1}^nk\right|\stackrel{(3)}{=}\sum\limits_{k=1}^nk

So in this case we prove, that:

 \left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\sum\limits_{k=1}^nk

2) n is odd.

Here, S_n^- has more terms than S_n^+. For example if n=7 then:

S_7^-=\underbrace{1^2+3^2+5^2+7^2}_{\frac{n+1}{2}=\frac{7+1}{2}=4}\\\\\\
S_7^+=\underbrace{2^2+4^4+6^2}_{\frac{n+1}{2}-1=\frac{7+1}{2}-1=3}\\\\\\

So there is \dfrac{n+1}{2} terms in S_n^-, \dfrac{n+1}{2}-1 terms in S_n^+ and:

S_n^+=\sum\limits_{k=1}^{\frac{n+1}{2}-1}(2k)^2\\\\\\
S_n^-=\sum\limits_{k=1}^{\frac{n+1}{2}}(2k-1)^2

Now, we can calculate our sum:

\left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\left|S_n^+-S_n^-\right|=
\left|\sum\limits_{k=1}^{\frac{n+1}{2}-1}(2k)^2-\sum\limits_{k=1}^{\frac{n+1}{2}}(2k-1)^2\right|=\\\\\\=
\left|\sum\limits_{k=1}^{\frac{n+1}{2}-1}4k^2-\sum\limits_{k=1}^{\frac{n+1}{2}}\left(4k^2-4k+1\right)\right|=\\\\\\=
\left|\sum\limits_{k=1}^{\frac{n-1}{2}-1}4k^2-\sum\limits_{k=1}^{\frac{n+1}{2}}4k^2+\sum\limits_{k=1}^{\frac{n+1}{2}}4k-\sum\limits_{k=1}^{\frac{n+1}{2}}1\right|=\\\\\\

=\left|\sum\limits_{k=1}^{\frac{n-1}{2}-1}4k^2-\sum\limits_{k=1}^{\frac{n+1}{2}-1}4k^2-4\left(\dfrac{n+1}{2}\right)^2+\sum\limits_{k=1}^{\frac{n+1}{2}}4k-\sum\limits_{k=1}^{\frac{n+1}{2}}1\right|=\\\\\\=
\left|-4\left(\dfrac{n+1}{2}\right)^2+4\sum\limits_{k=1}^{\frac{n+1}{2}}k-\sum\limits_{k=1}^{\frac{n+1}{2}}1\right|\stackrel{(1),(2)}{=}\\\\\\
\stackrel{(1),(2)}{=}\left|-4\dfrac{n^2+2n+1}{4}+4\dfrac{\frac{n+1}{2}\left(\frac{n+1}{2}+1\right)}{2}-\dfrac{n+1}{2}\right|=\\\\\\

=\left|-n^2-2n-1+2\cdot\dfrac{n+1}{2}\left(\dfrac{n+1}{2}+1\right)-\dfrac{n+1}{2}\right|=\\\\\\=
\left|-n^2-2n-1+(n+1)\left(\dfrac{n+1}{2}+1\right)-\dfrac{n+1}{2}\right|=\\\\\\=
\left|-n^2-2n-1+\dfrac{(n+1)^2}{2}+n+1-\dfrac{n+1}{2}\right|=\\\\\\=
\left|-n^2-n+\dfrac{n^2+2n+1}{2}-\dfrac{n+1}{2}\right|=\\\\\\=
\left|-n^2-n+\dfrac{n^2}{2}+n+\dfrac{1}{2}-\dfrac{n}{2}-\dfrac{1}{2}\right|=\left|-\dfrac{n^2}{2}-\dfrac{n}{2}\right|=\left|-\dfrac{n^2+n}{2}\right|=\\\\\\

=\left|-\dfrac{n(n+1)}{2}\right|=|-1|\cdot\left|\dfrac{n(n+1)}{2}\right|=\left|\dfrac{n(n+1)}{2}\right|\stackrel{(2)}{=}\left|\sum\limits_{k=1}^nk\right|\stackrel{(3)}{=}\sum\limits_{k=1}^nk

We consider all possible n so we prove that:

\forall_{n\in\mathbb{N}}\quad\left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\sum\limits_{k=1}^nk
7 0
3 years ago
PLEASE HELP ME!! LAST ASSIGNMENT
Darya [45]

Answer:

u = 3

Step-by-step explanation:

\frac{10}{14} = \frac{35}{u + 46} \\\\ 10(u + 46) = 35×14 \\\ 10u + 460 = 490 \\\ 10u = 490 - 460 \\\ 10u = 30 \\\ u = \frac{30}{10} \\\\ u = 3

I hope I've helped you.

5 0
2 years ago
Read 2 more answers
19038 times 8975765yud
ehidna [41]
1.7088061E11 on a calculator that's what I did

8 0
3 years ago
Other questions:
  • Substitute -4×+y=6 , -5×-y=21
    10·1 answer
  • As Venus resolves around the sun, it travels at a rate of approximately 22 miles per second. Concert this rate to miles per minu
    13·1 answer
  • A convention planner estimates that the size in square feet of a room needed for a large assembly is 20 times the number of atte
    13·1 answer
  • Ppppppppppllllllllllllzzzzzzzz help
    12·1 answer
  • Which of the following describes a situation in which the total distance a car travels is 0 meters from its starting point?
    7·2 answers
  • Two fractions have a common which of the following could be the two fractions
    10·1 answer
  • What's the common denominator of this equation?<br> 3 - b = 6-7
    6·2 answers
  • Cone with a radius of 5cm and a height of 10cm. What is the volume
    7·1 answer
  • Solve the systems of equations using substitution. <br> -3x + 2y = 12<br> x = 2y - 8
    5·1 answer
  • -11x + 7y = 5 and 5x – 2y = – 7<br> PLEASE HURRY
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!