Answer:
a = 1600 m / s²
Explanation:
For this exercise we use the kinematics relations,
v² = v₀² + 2 a x
where v₀ is the initial velocity of the bullet, which as part of rest is zero, for the distance (x) we can assume that the gases accelerate along the entire trajectory of the cannon x = 2m
a = 
let's calculate
a =
a = 1600 m / s²
Answer:
unit (v) = [ -0.199 i - 0.8955 j + 0.39801 k ]
Explanation:
Given:
v = (-23.2, -104.4, 46.4) m/s
Above expression describes spacecraft's velocity vector v.
Find:
Find unit vector in the direction of spacecraft velocity v.
Solution:
Step 1: Compute magnitude of velocity vector.
mag (v) = sqrt ( 23.2^2 + 104.4^2 + 46.4^2)
mag (v) = 116.58 m/s
Step 2: Compute unit vector unit (v)
unit (v) = vec (v) / mag (v)
unit (v) = [ -23.2 i -104.4 j + 46.4 k ] / 116.58
unit (v) = [ -0.199 i - 0.8955 j + 0.39801 k ]
Answer:
C) amplitude
Explanation:
"The amplitude is a measure of the strength or intensity of the wave. For example, when looking at a sound wave, the amplitude will measure the loudness of the sound. The energy of the wave also varies in direct proportion to the amplitude of the wave."-Ducksters
Answer:
The answer to your question is: total energy = 30100.4 J
Explanation:
Kinetic energy (KE) is the energy due to the movement of and object, its units are joules (J)
Data
mass = 1280 kg
speed = 4.92 m/s
Force = 509 N
distance = 28.7 m
Formula

Work = Fd
Process
- Calculate Kinetic energy
- Calculate work
- Add both results
KE = 
KE = 15492.1 J
Work = (509)(28.7)
Work = 14608.3 J
Total = 15492.1 + 14608.3
Total energy = 30100.4 J