Answer:
velocity of mass when it slides of will be 1.36 m/sec
So option (b) will be correct option.
Explanation:
We have given mass of the slits m = 75 gram = 0.075 kg
Radius r = 75 cm = 0.75 m
Coefficient of kinetic friction 
Acceleration due to gravity 
When the mass slides of


So velocity of mass when it slides of will be 1.36 m/sec
So option (b) will be correct option.
Answer:
29.39 kg
Explanation:
From the question,
W = mg...................... Equation 1
Where W = weight of the cuboid box, m = mass of the cuboid box, g = acceleration due to gravity.
make m the subject of the equation
m = W/g.................. Equation 2
Given: W = 288 N
Constant: g = 9.8 m/s²
Substitute these values into equation 2
m = 288/9.8
m = 29.39 kg
The answer is B. P waves.
I took the test and it was correct. I hope this helps!
Answer:
The tension in string is found to be 188.06 N
Explanation:
For the vibrating string the fundamental frequency is given as:
f1 = v/2L
where,
f1 = fundamental frequency = 335 Hz
v = speed of wave
L = length of string = 28.5 cm = 0.285 m
Therefore,
v = f1 2L
v = (335 Hz)(2)(0.285)
v = 190.95 m/s
Now, for the tension:
v = √T/μ
v² = T/μ
T = v² μ
where,
T = Tension
v = speed = 190.95 m/s
μ = linear mass density of string = mass/L = 0.00147 kg/0.285 m = 5.15 x 10^-3 kg/m
Therefore,
T = (190.95 m/s)²(5.15 x 10^-3 kg/m)
<u>T = 188.06 N</u>