Answer:
Ocean waves, sound waves, and light waves.
Explanation:
<u>Answer:</u>
Both the objects A and B will have the same acceleration.
<u>Explanation
:</u>
The objects will have the same acceleration as both are under free fall condition. When objects are under the free fall condition, the only force that acts on the object is its weight.
Weight is the force acting on a body of some mass, and the formula for finding the weight of a body is- Weight = mass × acceleration due to gravity(g).
Therefore, here the different weight is due to the difference masses of both bodies, and not due to the different acceleration values.
Answer:
Maximum height reached by the rocket, h = 202.62 meters
Explanation:
It is given that,
Initial speed of the model rocket, u = 56.5 m/s
Constant upward acceleration, 
Distance traveled by the engine until it stops, d = 198.8 m
Let v is the speed of the rocket when the engine stops. It can be calculated using the third equation of motion as :

v = 63.02 m/s
At the maximum height, v = 0 and the engine now decelerate under the action of gravity, a = -g. Let h is the maximum height reached by the rocket.
Again using third equation of motion as :




h = 202.62 meters
So, the maximum height reached by the rocket is 202.62 meters. Hence, this is the required solution.
Answer:
2 x 10⁻³ volts
Explanation:
B = magnetic of magnetic field parallel to the axis of loop = 1 T
= rate of change of area of the loop = 20 cm²/s = 20 x 10⁻⁴ m²
θ = Angle of the magnetic field with the area vector = 0
E = emf induced in the loop
Induced emf is given as
E = B
E = (1) (20 x 10⁻⁴ )
E = 2 x 10⁻³ volts
E = 2 mV