1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
rewona [7]
3 years ago
7

Which of the following statements about energy is true?

Physics
1 answer:
irina1246 [14]3 years ago
3 0

Answer:ll. Kinetic energy can be transformed into Potential energy.

And, lll. Potential energy can be transformed into Kinetic energy

You might be interested in
What force is acting on the rainwater in the model?
Vikki [24]
The force is gravitational because when something is falling is call gravitational
8 0
3 years ago
Read 2 more answers
A 44-cm-diameter water tank is filled with 35 cm of water. A 3.0-mm-diameter spigot at the very bottom of the tank is opened and
cricket20 [7]

Answer:

The frequency f = 521.59 Hz

The rate at which the frequency is changing = 186.9 Hz/s

Explanation:

Given that :

Diameter of the tank = 44 cm

Radius of the tank = \frac{d}{2} =\frac{44}{2} = 22 cm

Diameter of the spigot = 3.0 mm

Radius of the spigot = \frac{d}{2} =\frac{3.0}{2} = 1.5 mm

Diameter of the cylinder = 2.0 cm

Radius of the cylinder = \frac{d}{2} = \frac{2.0}{2} = 1.0 cm

Height of the cylinder = 40 cm = 0.40 m

The height of the water in the tank from the spigot = 35 cm = 0.35 m

Velocity at the top of the tank = 0 m/s

From the question given, we need to consider that  the question talks about movement of fluid through an open-closed pipe; as such it obeys Bernoulli's Equation and the constant discharge condition.

The expression for Bernoulli's Equation is as follows:

P_1+\frac{1}{2}pv_1^2+pgy_1=P_2+\frac{1}{2}pv^2_2+pgy_2

pgy_1=\frac{1}{2}pv^2_2 +pgy_2

v_2=\sqrt{2g(y_1-y_2)}

where;

P₁ and P₂ = initial and final pressure.

v₁ and v₂ = initial and final fluid velocity

y₁ and y₂ = initial and final height

p = density

g = acceleration due to gravity

So, from our given parameters; let's replace

v₁ = 0 m/s ; y₁ = 0.35 m ; y₂ = 0 m ; g = 9.8 m/s²

∴ we have:

v₂ = \sqrt{2*9.8*(0.35-0)}

v₂ = \sqrt {6.86}

v₂ = 2.61916

v₂ ≅ 2.62 m/s

Similarly, using the expression of the continuity for water flowing through the spigot into the cylinder; we have:

v₂A₂ = v₃A₃

v₂r₂² = v₃r₃²

where;

v₂r₂ = velocity of the fluid and radius at the spigot

v₃r₃ = velocity of the fluid and radius at the cylinder

v_3 = \frac{v_2r_2^2}{v_3^2}

where;

v₂ = 2.62 m/s

r₂ = 1.5 mm

r₃ = 1.0 cm

we have;

v₃ = (2.62  m/s)* (\frac{1.5mm^2}{1.0mm^2} )

v₃ = 0.0589 m/s

∴ velocity  of the fluid in the cylinder =  0.0589 m/s

So, in an open-closed system we are dealing with; the frequency can be calculated by using the expression;

f=\frac{v_s}{4(h-v_3t)}

where;

v_s = velocity of sound

h = height of the fluid

v₃ = velocity  of the fluid in the cylinder

f=\frac{343}{4(0.40-(0.0589)(0.4)}

f= \frac{343}{0.6576}

f = 521.59 Hz

∴ The frequency f = 521.59 Hz

b)

What are the rate at which the frequency is changing (Hz/s) when the cylinder has been filling for 4.0 s?

The rate at which the frequency is changing is related to the function of time (t) and as such:

\frac{df}{dt}= \frac{d}{dt}(\frac{v_s}{4}(h-v_3t)^{-1})

\frac{df}{dt}= -\frac{v_s}{4}(h-v_3t)^2(-v_3)

\frac{df}{dt}= \frac{v_sv_3}{4(h-v_3t)^2}

where;

v_s (velocity of sound) = 343 m/s

v₃ (velocity  of the fluid in the cylinder) = 0.0589 m/s

h (height of the cylinder) = 0.40 m

t (time) = 4.0 s

Substituting our values; we have ;

\frac{df}{dt}= \frac{343*0.0589}{4(0.4-(0.0589*4.0))^2}

= 186.873

≅ 186.9 Hz/s

∴ The rate at which the frequency is changing = 186.9 Hz/s  when the cylinder has been filling for 4.0 s.

8 0
3 years ago
A hypothesis is _______.
Arada [10]

Answer:

A hypothesis is a basically a theory proposed to a subject or refrence to an act with limited evidences.

6 0
3 years ago
3) If a ball launched at an angle of 10.0 degrees above horizontal from an initial height of 1.50 meters has a final horizontal
Irina-Kira [14]

Answer:

35.6 m

Explanation:

3 0
3 years ago
A hockey puck is sliding across a frozen pond with an initial speed of 9.3 m/s. It comes to rest after sliding a distance of 42.
kondaur [170]

Answer:

The coefficient of kinetic friction between the puck and the ice is 0.11

Explanation:

Given;

initial speed, u = 9.3 m/s

sliding distance, S = 42 m

From equation of motion we determine the acceleration;

v² = u² + 2as

0 = (9.3)² + (2x42)a

- 84a = 86.49

a = -86.49/84

|a| = 1.0296

F_k = \mu_k N = ma

where;

Fk is the frictional force

μk is the coefficient of kinetic friction

N is the normal reaction = mg

μkmg = ma

μkg = a

μk = a/g

where;

g is the gravitational constant = 9.8 m/s²

μk = a/g

μk = 1.0296/9.8

μk = 0.11

Therefore, the coefficient of kinetic friction between the puck and the ice is 0.11

3 0
3 years ago
Other questions:
  • A compound machine is made up of one simple machine True or False
    5·2 answers
  • How long is a year on Earth and what journey does the Earth make in this space of time?
    8·2 answers
  • What would be the volume of a liquid that has a density of 1.2 g/mL and a mass of 24 grams
    15·1 answer
  • A major leaguer hits a baseball so that it leaves the bat at a speed of 31.3 m/s and at an angle of 36.7 ∘ above the horizontal.
    14·1 answer
  • You are climbing in the High Sierra when you suddenly find yourself at the edge of a fog-shrouded cliff. To find the height of t
    7·1 answer
  • Multiply the following numbers, using scientific notation and the correct amount of significant digits. 1.003 m⋅3.09 = _____ 3.0
    15·2 answers
  • With no difference in temperatures and 100% humidity, will it rain?
    9·1 answer
  • Need help with this electric physics question
    5·1 answer
  • What is the period and frequency of the second hand on a clock?
    6·1 answer
  • A shield of material that reflects neutrons is placed around a radioactive sample. Which change in the nuclear reaction is most
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!