True the amplitude of a wave determines the volume of a sound
Answer:
Spring constant, k = 24.1 N/m
Explanation:
Given that,
Weight of the object, W = 2.45 N
Time period of oscillation of simple harmonic motion, T = 0.64 s
To find,
Spring constant of the spring.
Solution,
In case of simple harmonic motion, the time period of oscillation is given by :

m is the mass of object


m = 0.25 kg


k = 24.09 N/m
or
k = 24.11 N/m
So, the spring constant of the spring is 24.1 N/m.
Answer:
a) I₁ = 11.2 Lux
, vertical direction
, b) I₂ = 1.44 Lux
Explanation:
a) A polarized is a system that absorbs light that is not polarized in the direction of its axis, therefore half of the non-polarized light must be absorbed
consequently the above the processed light has half of the incident intensity and the directional of the polarized
I₁ = I₀ / 2
I₁ = 22.4 / 2
I₁ = 11.2 Lux
is polarized in the vertical direction
b) The polarized light falls on a second polarizer, therefore it must comply with the law of Malus
I₂ = I₁ cos² θ
I₂ = 11.2 cos² 69
I₂ = 1.44 Lux
let the distance of pillar is "r" from one end of the slab
So here net torque must be balance with respect to pillar to be in balanced state
So here we will have

here we know that
mg = 19600 N
Mg = 400,000 N
L = 20 m
from above equation we have



so pillar is at distance 10.098 m from one end of the slab
Answer:
The wavelength in vacuum is equal to 428.8 nm.
Explanation:
Given that,
The wavelength of light, 
The refractive index of glass, n = 1.51
We need to find the wavelength in vacuum. The relation between wavelength and refractive index is given by :

So, the wavelength in vacuum is equal to 428.8 nm.