Answer:
(a) 4.0334Ω
(b)parallel
Explanation:
for resistors connected in parallel;

Req =3.03Ω , R1 =12.18Ω



R2=1/0.2479
R2=4.0334Ω
(b)parallel connection is suitable for the desired total resistance. series connection can not be used to achieve a lower resistance as the equation for series connection is.
Req = R1+R2
Answer:
the heat always transfers from high temperature to low temperature body without aid of any external energy to this law the heat transfers from cup of coffee to the person body until both bodies reaches to the equilibrium state
Explanation:
There's no air in space, so there's no air resistance there.
Answer:
The specific question is not stated, however the general idea is given in the attached picture. The electric field in each region can be found by Gauss’ Law.
at r < R:
Since the solid sphere is conducting, the total charge Q is distributed over the surface, and the electric field inside the sphere is zero.
E = 0.
at R < r < 2R:
The electric field can be found by Gauss’ Law as in the attachment. The green pencil shows this exact region.
at 2R < r:
The electric field can again be found by Gauss’ Law, the blue pencil shows the calculations for this region.
Explanation:
Gauss’ Law is straightforward when applied to spheres. The area of the sphere is
, and the enclosed charge is given in the question as Q for the inner sphere, and 2Q for the whole system.