I believe the answer is C
The thermal decomposition of calcium carbonate will produce 14 g of calcium oxide. The stoichiometric ratio of calcium carbonate to calcium oxide is 1:1, therefore the number of moles of calcium carbonate decomposed is equal to the number of moles of calcium oxide formed.
Further Explanation:
To solve this problem, follow the steps below:
- Write the balanced chemical equation for the given reaction.
- Convert the mass of calcium carbonate into moles.
- Determine the number of moles of calcium oxide formed by using the stoichiometric ratio for calcium oxide and calcium carbonate based on the coefficient of the chemical equation.
- Convert the number of moles of calcium oxide into mass.
Solving the given problem using the steps above:
STEP 1: The balanced chemical equation for the given reaction is:

STEP 2: Convert the mass of calcium carbonate into moles using the molar mass of calcium carbonate.

STEP 3: Use the stoichiometric ratio to determine the number of moles of CaO formed.
For every mole of calcium carbonate decomposed, one more of a calcium oxide is formed. Therefore,

STEP 4: Convert the moles of CaO into mass of CaO using its molar mass.

Since there are only 2 significant figures in the given, the final answer must have the same number of significant figures.
Therefore,

Learn More
- Learn more about stoichiometry brainly.com/question/12979299
- Learn more about mole conversion brainly.com/question/12972204
- Learn more about limiting reactants brainly.com/question/12979491
Keywords: thermal decomposition, stoichiometry
Answer:
2 CrO42- + 3N2O + 10 H+ -----> 2Cr3+ + 6NO + 5H2O
Explanation:
2 CrO42- + 3N2O + 10 H+ -----> 2Cr3+ + 6NO + 5H2O
Oxidizing agent: -----------------------------> CrO42-
Reducing agent: ----------------------------> N2O
explanation:
in CrO4-2 oxdiation state of Cr = +6
in Cr+3 oxidation state = +3
+6 oxidation state changed from +3 it is reduction .
so CrO4-2 is oxidizing agent
atomatically
N2O should be reducing agent
Answer:
I think it is AM and frequency
Explanation:
Sorry if i'm wrong ;)
Question:
A student weighed an empty graduated cylinder. It weighed 35.86 g. She then carefully added water to the graduated cylinder until it reached the 7.5 mL mark. When she weighed the graduated cylinder again, this time with the 7.5 mL of water in it, it weighed 43.18 g. What was this student's experimental density of water?
Answer:
0.976 g/mL
Explanation:
Weight of empty cylinder = 35.86g
Volume of water = 7.5mL
Weight of cylinder + water = 43.18g
Experimental density = ?
Density of water = Mass of water / volume of water
Mass of water = (Weight of cylinder + water) - Weight of empty cylinder
Mass of water = 43.18 - 35.86 = 7.32g
Density = 7.32 / 7.5 = 0.976 g/mL