Williamson synthesis is the most common way for obtaining ethers, called after its developer Alexander Williamson. It is an organic reaction of forming ethers from an organohalide and an alkoxide. The reaction is carried out according to the SN2 mechanism.
On the attached picture it is shown required alkoxide ion, <span>alkyl(aryl)bromide and the ether that forms from the reactants. </span>
<span>The symbol for hydronium ion concentration is H+. </span><span>There are quite a few
relationships between [H+] and [OH−]
ions. And because there is a large range of number between 10 to 10</span><span>-15</span><span>
M, the pH is used. pH = -log[H+] and pOH = -log[OH−]. In aqueous solutions, </span><span>[H+
][OH- ] = 10-14. From here we can derive the values of each concentration.</span>
1.0 mole ---------- 6.02x10²³ molecules
4.5 moles -------- ?
4.5 * 6,02x10²³ / 1.0
= 2.709x10²⁴ molecules units