Answer:
the photons (quanta of light) collide with the electrons, these electrons have to overcome the threshold energy that is the energy of union with the metal, and the energy that remains is converted to kinetic energy.
K = E - Ф
Explanation:
The photoelectric effect is the emission of electrons from the surface of a metal.
This was correctly explained by Einstein, in his explanation the energy of the photons (quanta of light) collide with the electrons, these electrons have to overcome the threshold energy that is the energy of union with the metal, and the energy that remains is converted to kinetic energy.
E = hf
E = K + Ф
K = E - Ф
The energy of the photons is given by the Planck relation E = hf and according to Einstein the number of joints must be added
E = n hf
Therefore, depending on the value of this energy, the emitted electrons can have energy from zero onwards.
Metallic bonds are responsible for many properties of metals, such as conductivity. This is because the bonds can shift because valence electrons are held loosely and move freely. That is option C.
<h3>What are metallic bonds?</h3>
Metallic bonds are defined as those bonds that causes the electrostatic attraction between metal cations and delocalized electrons of another metallic substance.
The characteristics of a metallic compound with metallic bonds include the following:
- thermal and electrical conductivity,
The metallic bonds of these metallic atoms gives them conductivity features because the electrons from the outer shells of the metal atoms are delocalised , and are free to move through the whole structure.
Learn more about metals here:
brainly.com/question/4701542
#SPJ1
<span>No, because the truck applies more pressure than the bridge can support.</span>
Section 2 is right,, i think. good luck
Answer:
D. Meters/Seconds
Explanation:
The time period of a wave is measured in seconds.
A typical wave involves both time and distance. Consider a sound wave, which is basically a periodic modulation of the local air pressure. We "hear" the sound because our ears respond to the variations of pressure.
The most common metric of a sound wave is frequency. This is the rate at which the change in pressure occurs, and is measured in cycles per second, formally known as "hertz". The period is the inverse of frequency andl has the units of seconds per cycle, commonly stated simply as seconds.