From the information given above,
Mass [M] = 28 g
Change in temperature = 29 - 7 = 22
Specific heat of iron = 0.449 [This value is constant]
The formula for calculating heat absorbed, Q is
Q = Mass * Specific heat of Iron * change in temperature
Q = 28 * 0.449 * 22 = 276.58 J<span />
The answer is to your question is c
<span>(a) 0.0676 l
(b) 67.6 cc
So we've been told that 5.00 L of blood flows through the heart every minute and that the heart beats 74.0 times per minute. So that means that for every beat of the heart, 5.00 L / 74.0 = 0.067567568 L of blood flows through the heart. Rounding to 3 significant figures gives 0.0676 l. Converting from liters to cubic centimeters simply require a multiplication by 1000, so we have 67.6 cc of blood pumped per beat.</span>
Explanation:
the branch of physical science that deals with the relations between heat and other forms of energy (such as mechanical, electrical, or chemical energy), and, by extension, of the relationships between all forms of energy
Answer:
4.92°
Explanation:
The banking angle θ = tan⁻¹(v²/rg) where v = designated speed of ramp = 30 mph = 30 × 1609 m/3600 s = 13.41 m/s, r = radius of curve = 700 ft = 700 × 0.3048 m = 213.36 m and g = acceleration due to gravity = 9.8 m/s²
Substituting the variables into the equation, we have
θ = tan⁻¹(v²/rg)
= tan⁻¹((13.41 m/s)²/[213.36 m × 9.8 m/s²])
= tan⁻¹((179.8281 m²/s)²/[2090.928 m²/s²])
= tan⁻¹(0.086)
= 4.92°