1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
borishaifa [10]
3 years ago
14

Why do we add the masses together after that inelastic collision?

Physics
1 answer:
fomenos3 years ago
5 0

Answer:An inelastic collision is one in which the internal kinetic energy changes (it is not conserved). A collision in which the objects stick together is sometimes called perfectly inelastic because it reduces internal kinetic energy more than does any other type of inelastic collision.People sometimes think that objects must stick together in an inelastic collision. However, objects only stick together during a perfectly inelastic collision. Objects may also bounce off each other or explode apart, and the collision is still considered inelastic as long as kinetic energy is not conserved.

hope this helps have a nice day❤️

Explanation:

You might be interested in
Having landed on a newly discovered planet, an astronaut sets up a simple pendulum of length 1.38 m and finds that it makes 441
Tasya [4]
The period of a simple pendulum is given by:
T=2 \pi  \sqrt{ \frac{L}{g} }
where L is the pendulum length, and g is the gravitational acceleration of the planet. Re-arranging the formula, we get:
g= \frac{4 \pi^2}{T^2}L (1)

We already know the length of the pendulum, L=1.38 m, however we need to find its period of oscillation.

We know it makes N=441 oscillations in t=1090 s, therefore its frequency is
f= \frac{N}{t}= \frac{441}{1090 s}=0.40 Hz
And its period is the reciprocal of its frequency:
T= \frac{1}{f}= \frac{1}{0.40 Hz}=2.47 s

So now we can use eq.(1) to find the gravitational acceleration of the planet:
g= \frac{4 \pi^2}{T^2}L =  \frac{4 \pi^2}{(2.47 s)^2} (1.38 m) =8.92 m/s^2
3 0
3 years ago
The cornea behaves as a thin lens of focal lengthapproximately 1.80 {\rm cm}, although this varies a bit. The material of whichi
Keith_Richards [23]

Answer:

Explanation:

  a )

from lens makers formula

\frac{1}{f} =(\mu-1)(\frac{1}{r_1} -\frac{1}{r_2})

f is focal length , r₁ is radius of curvature of one face and r₂ is radius of curvature of second face

putting the values

\frac{1}{1.8} =(1.38-1)(\frac{1}{.5} -\frac{1}{r_2})

1.462 = 2 - 1 / r₂

1 / r₂ = .538

r₂ = 1.86 cm .

= 18.6 mm .

b )

object distance u = 25 cm

focal length of convex lens  f  = 1.8 cm

image distance  v   = ?

lens formula

\frac{1}{v} - \frac{1}{u} = \frac{1}{f}

\frac{1}{v} - \frac{1}{-25} = \frac{1}{1.8}

\frac{1}{v} = \frac{1}{1.8} -\frac{1}{25}

.5555 - .04

= .515

v = 1.94 cm

c )

magnification = v / u

= 1.94 / 25

= .0776

size of image = .0776 x size of object

= .0776 x 10 mm

= .776 mm

It will be a real image and it will be inverted.

 

5 0
3 years ago
Label and describe what is happening in this picture
SOVA2 [1]
Something is reproducing.
7 0
3 years ago
What does each system help you do?
Maru [420]

Explanation:

1.The somatic nervous system is the part of the peripheral nervous system associated with the voluntary control of body movements via skeletal muscles. 

2. The autonomic nervous system is a control system that acts largely unconsciously and regulates bodily functions, such as the heart rate, digestion, respiratory rate, pupillary response, urination, ect...

3. Sympathetic Division is a term used by researchers and medical practitioners to describe the subdivision of the autonomic nervous system (that controls involuntary and automatic physical reactions) that responds to emergency situations by mobilizing and controlling the energy necessary to cope with the situation.

4. The part of the autonomic nervous system that tends to act in opposition to the sympathetic nervous system, as by slowing down the heart and dilating the blood vessels. It also regulates the function of many glands, such as those that produce tears and saliva.

5. a regulatory substance produced in an organism and transported in tissue fluids such as blood or sap to stimulate specific cells or tissues into action.

7 0
3 years ago
How much force is needed to keep the 750000 Newton Space Shuttle moving at a constant speed of 28000 km/h, in a straight line?
Alika [10]

The force needed to keep the space shuttle moving at constant speed is 0.

The given parameters;

  • <em>weight of the space shuttle, F = 750,000 N</em>
  • <em>constant speed of the space shuttle, v = 28,000 km/h</em>

The mass of the space shuttle is calculated as follows;

W = mg\\\\m = \frac{W}{g} \\\\m = \frac{750,000}{9.8} \\\\m = 76,530.61 \ kg

The force needed to keep the space shuttle moving at constant speed is calculated as follows;

F = ma

F = 76,530.61 \times a

where;

a is the acceleration of the space shuttle

At a constant speed, acceleration is zero.

F = 76,530.61 x 0

F = 0

Thus, the force needed to keep the space shuttle moving at constant speed is 0.

Learn more here:brainly.com/question/16374764

6 0
2 years ago
Other questions:
  • A ray of light strikes a smooth surface and is reflected. The angle of incidence is 35°. What can be predicted about the angle o
    14·2 answers
  • A comet is a
    12·1 answer
  • How to type a capital letter in my computer​
    9·2 answers
  • Explain why decomposition use solar energy?
    5·1 answer
  • An atom's mass number equals the number of
    11·1 answer
  • How much charge passes through a wire in 4.0 s if the current is 3.0 A?
    6·1 answer
  • I’ll love you forever if you help me &lt;3
    12·1 answer
  • Which is NOT an effect of friction?
    12·1 answer
  • What is meant by error​
    5·1 answer
  • Numerical
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!