2,3,7,10,13 i did this yesterday can u mark me brainliest
Answer:
0.1593 L.
Explanation:
- We can use the general law of ideal gas: PV = nRT.
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
- If n and P are constant, and have two different values of V and T:
<em>P₁V₁T₂ = P₂V₂T₁</em>
<em></em>
P₁ = 600 torr/760 = 0.789 atm, V₁ = 185.0 mL = 0.185 L, T₁ = 25.0°C + 273 = 298.0 K.
P₂ (at STP) = 1.0 atm, V₂ = ??? L, T₂ (at STP = 0.0°C) = 0.0°C + 273 = 273.0 K.
<em>∴ V₂ = P₁V₁T₂/P₂T₁</em> = (0.789 atm)(0.185 mL)(298.0 K)/(1.0 atm)(273.0 K) = <em>0.1593 L.</em>
Balanced equation for the reaction between ammonia and sulphuric acid is:
Explanation:
2NH3+H2SO4→(NH4)2SO4
I hope it'll help you...
Gibbs free energy of a reaction (
Δ
G ) is the change in free energy of a system that undergoes the chemical reaction. It is the energy associated with the reaction, which is available to do some useful work. If ΔG<0
, then the reaction can be utilized to do some useful work. If
ΔG>0
, then work has to be done on the system or external energy is required to make the reaction happen. ΔG=0 when the reaction is at equilibrium and there is no net change taking place in the system.