Answer:
1) HCl contains the Cl^- which is a good nucleophile
2) 2-methyl-2- heptanol > 2-heptanol > 1-heptanol
3) see image attached
Explanation:
If the dehydration of alcohols is carried out using HCl, the chloride ion which is a good nucleophile will attack the substrate to yield an undesirable product.
The dehydration of alcohols is an E1 reaction. Recall that the ease of E1 reaction increases in the order 3°> 2°> 1°. Hence, 2-methyl-2- heptanol forms a tertiary carbocation intermediate during dehydration and has the greatest ease of dehydration.
The three products formed during the dehydration of 3,3-dimethyl-2-butanol are shown in the image attached. Two out of the three are formed by rearrangement reactions.
Answer:
Cytokine release syndrome (CRS) is an acute systemic inflammatory syndrome characterized by fever and multiple organ dysfunction that is associated with chimeric antigen receptor (CAR)-T cell therapy, therapeutic antibodies, and haploidentical allogeneic transplantation.
Explanation:
Answer:
Explanation:
Whenever you see molar masses in gas law questions, more often than not density will be involved. This question is no different. To solve this, however, we will first need to play with the combined ideal gas equation PV=nRT to make it work for density and molar mass. The derivation is simple but for the sake of time and space, I will skip it. Hence, just take my word for it that you will end up with the equation:M=dRTPM = molar mass (g/mol)d = density (g/L)R = Ideal Gas Constant (≈0.0821atm⋅Lmol⋅K) T = Temperature (In Kelvin) P = Pressure (atm)As an aside, note that because calculations with this equation involve molar mass, this is the only variation of the ideal gas law in which the identity of the gas plays a role in your calculations. Just something to take note of. Back to the problem: Now, looking back at what we're given, we will need to make some unit conversions to ensure everything matches the dimensions required by the equation:T=35oC+273.15= 308.15 KV=300mL⋅1000mL1L= 0.300 LP=789mmHg⋅1atm760mmHg= 1.038 atmSo, we have almost everything we need to simply plug into the equation. The last thing we need is density. How do we find density? Notice we're given the mass of the sample (0.622 g). All we need to do is divide this by volume, and we have density:d=0.622g0.300L= 2.073 g/LNow, we can plug in everything. When you punch the numbers into your calculator, however, make sure you use the stored values you got from the actual conversions, and not the rounded ones. This will help you ensure accuracy.M=dRTP=(2.073)(0.0821)(308.15)1.038= 51 g/molRounded to 2 significant figuresNow if you were asked to identify which element this is based on your calculation, your best bet would probably be Vandium (molar mass 50.94 g/mol). Hope that helped :)
Answer:
1) The elements have filled valence levels.
Explanation:
Since they have filled valence levels, they're stable and don't need to electrons to fill their valence shells since they're already full.
2) False, They do have electrons
3) False, He does have only one electron shell, but going down the periods, every next element have one more electron shell than a preceding one has.
4)False, they're actually the smallest atoms of their respective period
Because your Teeth are composed of calcium, phosphorus, and other minerals. ... But bones are still not as strong as teeth. The hardest part of the human body ,teeth mostly consist of a calcified tissue called dentine. The tooth's dentine tissue is covered in enamel, that hard, shiny layer that you brush.