Answer:
No because it is stayed that way and you can't define them differently.
Answer:
#if u think ur a dumb thn u'll always b a dumb so try it urself n don't think ur a dumb n one more l don't want ur crown if u don't like my ans.... ;)
Answer:
m= 29.645 g
Explanation:
Density:
Density is equal to the mass of substance divided by its volume.
Units:
SI unit of density is Kg/m3.
Other units are given below,
g/cm3, g/mL , kg/L
Formula:
D=m/v
D= density
m=mass
V=volume
Symbol:
The symbol used for density is called rho. It is represented by ρ. However letter D can also be used to represent the density.
Given data:
density of wood = 0.77 g/cm³
volume= 38.5 cm³
mass= ?
Solution:
d= m/v
m= d × v
m= 0.77 g/cm³× 38.5 cm³
m= 29.645 g
Answer:
The enthalpy of the solution is -35.9 kJ/mol
Explanation:
<u>Step 1:</u> Data given
Mass of lithiumchloride = 3.00 grams
Volume of water = 100 mL
Change in temperature = 6.09 °C
<u>Step 2:</u> Calculate mass of water
Mass of water = 1g/mL * 100 mL = 100 grams
<u>Step 3:</u> Calculate heat
q = m*c*ΔT
with m = the mass of water = 100 grams
with c = the heat capacity = 4.184 J/g°C
with ΔT = the chgange in temperature = 6.09 °C
q = 100 grams * 4.184 J/g°C * 6.09 °C
q =2548.1 J
<u>Step 4:</u> Calculate moles lithiumchloride
Moles LiCl = mass LiCl / Molar mass LiCl
Moles LiCl = 3 grams / 42.394 g/mol
Moles LiCl = 0.071 moles
<u>Step 5:</u> Calculate enthalpy of solution
ΔH = 2548.1 J /0.071 moles
ΔH = 35888.7 J/mol = 35.9 kJ/mol (negative because it's exothermic)
The enthalpy of the solution is -35.9 kJ/mol
Answer : The enthalpy change for the solution is 42.8 kJ/mol
Explanation :
Heat released by the reaction = Heat absorbed by the calorimeter + Heat absorbed by the water
![q=[q_1+q_2]](https://tex.z-dn.net/?f=q%3D%5Bq_1%2Bq_2%5D)
![q=[c_1\times \Delta T+m\times c_2\times \Delta T]](https://tex.z-dn.net/?f=q%3D%5Bc_1%5Ctimes%20%5CDelta%20T%2Bm%5Ctimes%20c_2%5Ctimes%20%5CDelta%20T%5D)
where,
q = heat released by the reaction
= heat absorbed by the calorimeter
= heat absorbed by the water
= specific heat of calorimeter = 
= specific heat of water = 
= mass of water = 100.0 g
= change in temperature = 
Now put all the given values in the above formula, we get:
![q=[(15.8J/^oC\times 8.1^oC)+(100.0g\times 4.18J/g^oC\times 8.1^oC)]](https://tex.z-dn.net/?f=q%3D%5B%2815.8J%2F%5EoC%5Ctimes%208.1%5EoC%29%2B%28100.0g%5Ctimes%204.18J%2Fg%5EoC%5Ctimes%208.1%5EoC%29%5D)
(1 kJ = 1000 J)
Now we have to calculate the enthalpy change for the solution.

where,
= enthalpy change = ?
q = heat released = 3.5138 kJ
m = mass of NaOH = 3.25 g
Molar mass of NaOH = 40 g/mole

Now,

Therefore, the enthalpy change for the solution is 42.8 kJ/mol