Fever is a NON-SPECIFIC immune response, called a "constitutional symptom," because varies entities may initiate a pyrogenic (fever) response. Bacterial infection, Viral infection, inflammation, and auto-immune reactions can all cause a fever at some point of their processes.
Cellular respiration is a metabolic pathway that breaks down glucose and produces ATP. The stages of cellular respiration include glycolysis, pyruvate oxidation, the citric acid or Krebs cycle, and oxidative phosphorylation.
During cellular respiration, a glucose molecule is gradually broken down into carbon dioxide and water. Along the way, some ATP is produced directly in the reactions that transform glucose. Much more ATP, however, is produced later in a process called oxidative phosphorylation. Oxidative phosphorylation is powered by the movement of electrons through the electron transport chain, a series of proteins embedded in the inner membrane of the mitochondrion.
These electrons come originally from glucose and are shuttled to the electron transport chain when they gain electrons.
As electrons move down the chain, energy is released and used to pump protons out of the matrix, forming a gradient. Protons flow back into the matrix through an enzyme called ATP synthase, making ATP. At the end of the electron transport chain, oxygen accepts electrons and takes up protons to form water. Glycolysis can take place without oxygen in a process called fermentation. The other three stages of cellular respiration—pyruvate oxidation, the citric acid cycle, and oxidative phosphorylation—require oxygen in order to occur. Only oxidative phosphorylation uses oxygen directly, but the other two stages can't run without oxidative phosphorylation.). As electrons move down the chain, energy is released and used to pump protons out of the matrix, forming a gradient. Protons flow back into the matrix through an enzyme called ATP synthase, making ATP. At the end of the electron transport chain, oxygen accepts electrons and takes up protons to form water.
Glycolysis can take place without oxygen in a process called fermentation. The other three stages of cellular respiration—pyruvate oxidation, the citric acid cycle, and oxidative phosphorylation—require oxygen in order to occur. Only oxidative phosphorylation uses oxygen directly, but the other two stages can't run without oxidative phosphorylation.
The three cellular components, which takes part in the process of metabolism and are affected by the modifications in temperature are ribosomes, cell membrane, and enzymes.
All these are formed of a certain type of protein, which can become denatured when exposed to high enough heat or stop gets functioning at too low temperature. The high temperature can disrupt the non-polar hydrophobic interactions and hydrogen bonds. This takes place as heat enhances the kinetic energy and makes the molecules to throb so briskly and viciously that the bonds get disordered.
A is for sure an answer , i’m pretty sure C -ISNT- an answer . for b and c, someone can comment on it.