Question:
A 63.0 kg sprinter starts a race with an acceleration of 4.20m/s square. What is the net external force on him? If the sprinter from the previous problem accelerates at that rate for 20m, and then maintains that velocity for the remainder for the 100-m dash, what will be his time for the race?
Answer:
Time for the race will be t = 9.26 s
Explanation:
Given data:
As the sprinter starts the race so initial velocity = v₁ = 0
Distance = s₁ = 20 m
Acceleration = a = 4.20 ms⁻²
Distance = s₂ = 100 m
We first need to find the final velocity (v₂) of sprinter at the end of the first 20 meters.
Using 3rd equation of motion
(v₂)² - (v₁)² = 2as₁ = 2(4.2)(20)
v₂ = 12.96 ms⁻¹
Time for 20 m distance = t₁ = (v₂ - v ₁)/a
t₁ = 12.96/4.2 = 3.09 s
He ran the rest of the race at this velocity (12.96 m/s). Since has had already covered 20 meters, he has to cover 80 meters more to complete the 100 meter dash. So the time required to cover the 80 meters will be
Time for 100 m distance = t₂ = s₂/v₂
t₂ = 80/12.96 = 6.17 s
Total time = T = t₁ + t₂ = 3.09 + 6.17 = 9.26 s
T = 9.26 s
It is called observation because you observe with your nose by semlling things your eyes by looking at things your ears by hearing things your tongue by tasting things and your hands by feeling things
C: Litmus Paper. Red litmus paper turns blue in acids; blue litmus paper turns red in bases
Answer:
22145.27733 ft
124984.76055 ft
Explanation:
The equation of pressure is

where,
=Atmospheric pressure = 800 mbar
k = Constant
h = Altitude = 35000 ft


Now


The altitude will be 22145.27733 ft


The elevation is 124984.76055 ft
Answer:
D. Asthenosphere
Explanation:
The asthenosphere is relatively plastic part of the mantle which underlies the brittle lithosphere. In the asthenosphere, it is generally believed that the rocks are in ductile state and easily moves. It is the site of convection within the earth. In mantle convection, hot and light materials rises and keeps moving into upper crustal levels till they solidify. Here also, cold and denser materials sinks deeper till they turn to melt. This differences in temperature and density sets up a convective cell within the mantle. Several convective cells are in the mantle.