Answer:
A) K / K₀ = 4 b) v / v₀ = 4
Explanation:
A) For this exercise we can use the conservation of mechanical energy
in the problem it indicates that the displacement was doubled (x = 2xo)
starting point. At the position of maximum displacement
Em₀ = Ke = ½ k (2x₀)²
final point. In the equilibrium position
= K = ½ m v²
Em₀ = Em_{f}
½ k 4 x₀² = K
(½ K x₀²) = K₀
K = 4 K₀
K / K₀ = 4
B) the speed value
½ k 4 x₀² = ½ m v²
v = 4 (k / m) x₀
if we call
v₀ = k / m x₀
v = 4 v₀
v / v₀ = 4
We have that the letter A in the diagram below given as
Amplitude
Option A
<h3>
Amplitude</h3>
Question Parameters:
Amplitude
Crest
Trough
Wavelength
Generally, the amplitude of a wave is the maximum displacement of the wave in the medium from its initial position.
Amplitude is denoted with the letter A
Therefore,Amplitude
Option A
For more information on displacement visit
brainly.com/question/989117
On a similar problem wherein instead of 480 g, a 650 gram of bar is used:
Angular momentum L = Iω, where
<span>I = the moment of inertia about the axis of rotation, which for a long thin uniform rod rotating about its center as depicted in the diagram would be 1/12mℓ², where m is the mass of the rod and ℓ is its length. The mass of this particular rod is not given but the length of 2 meters is. The moment of inertia is therefore </span>
<span>I = 1/12m*2² = 1/3m kg*m² </span>
<span>The angular momentum ω = 2πf, where f is the frequency of rotation. If the angular momentum is to be in SI units, this frequency must be in revolutions per second. 120 rpm is 2 rev/s, so </span>
<span>ω = 2π * 2 rev/s = 4π s^(-1) </span>
<span>The angular momentum would therefore be </span>
<span>L = Iω </span>
<span>= 1/3m * 4π </span>
<span>= 4/3πm kg*m²/s, where m is the rod's mass in kg. </span>
<span>The direction of the angular momentum vector - pseudovector, actually - would be straight out of the diagram toward the viewer. </span>
<span>Edit: 650 g = 0.650 kg, so </span>
<span>L = 4/3π(0.650) kg*m²/s </span>
<span>≈ 2.72 kg*m²/s</span>
Answer:
(a) 0.942 m
(b) 18.84 m/s
(c) 2366.3 m/s²
(d) 0.05 s
Explanation:
(a) In one revolution, it travels through one circumference, 2πr = 2 × 3.14 × 0.15 m = 0.942 m.
(b) Its frequency, f, is 1200 rev/min =
rev/s = 20 rev/s.
Its angular frequency, ω = 2πf = 2π × 20 = 40π
The speed is given by
v = ωr = 40π × 0.15 = 6π = 18.84 m/s
(c) Its acceleration is given by, a = ω²r = (40π)² × 0.15 = 2366.3 m/s²
(d) The period is the inverse of the frequency because it is the time taken to complete one revolution.

T = 1/20 = 0.05 s