Answer:
A is the answer. Im only 12 and i hope this explanation helps you.
Explanation:
Lenz's Law of Electromagnetic Induction. Faraday's Law tells us that inducing a voltage into a conductor can be done by either passing it through a magnetic field, or by moving the magnetic field past the conductor and that if this conductor is part of a closed circuit, an electric current will flow.
Answer:
The horizontal component of the velocity is 21.9 m/s.
Explanation:
Please see the attached figure for a better understanding of the problem.
Notice that the vector v and its x and y-components (vx and vy) form a right triangle. Then, we can use trigonometry to find the magnitude of vx, the horizontal component of the velocity.
To find vx, let´s use the following trigonometric rule of right triangles:
cos α = adjacent / hypotenuse
cos 5.7° = vx / 22 m/s
22 m/s · cos 5.7° = vx
vx = 21.9 m/s
The horizontal component of the velocity is 21.9 m/s.
Answer:
a)At the mean position
b)At the extremes positions
Explanation:
Given that mass is having oscillation motion.
We know that
1. At the mean position -The velocity of the mass is maximum and the acceleration of the mass is minimum.The net force on the mass will be zero.
2. At the extreme position-The velocity of the mass is minimum and the acceleration of the mass is maximum.The net force on the mass will not be zero.
Therefore
a)At the mean position
b)At the extremes positions
The correct answer is B. Calcite
Explanation:
Mohs hardness scale indicates the hardness of minerals using a scale from 1 to 10 as well as defining the objects or tools that can be used to scratch the minerals. These two features of minerals are shown in the table of the image. About this, it is shown gypsum and talc can be scratched by just a fingernail, considering minerals with a hardness of 2.5 or below can be scratched by a fingernail. In the case of calcite that has a hardness of 3, this cannot be scratched by a fingernail, but it can be scratched by a penny, which works for minerals with a hardness of 3.5 or below. Thus, the correct answer is Calcite.