First off, you need to know the weight of the projectile, lift and drag coefficients something like a high Reynolds number is preferred, then use the gravitational constant of 9.8 meters per second squared those would be a good start to get closer to your goal
Answer:
heat energy is used in boiling water and to make steam at power stations
Explanation:
The frog's launch speed and the time spends in the air are 22.5m/s and 2.73s respectively.
To find the answer, we need to know about the time of flight and range of projectile motion.
<h3>What's the expression of range of a projectile motion?</h3>
- Range = U²× sin(2θ)/g
- U= initial velocity, θ= angle of projectile and g= acceleration due to gravity
- U=√{Range×g/sin(2θ)}
- Here, range= 2.20m, = 36.5°
- U= √{2.20×9.8/sin(73)}
U= √{2.20×9.8/sin(73)} = 22.5m/s
<h3>What's the expression of time of flight in projectile motion?</h3>
- Time of flight= (2×U×sinθ)/g
- So, T= (2×22.5×sin36.5°)/9.8
= 2.73 s
Thus, we can conclude that the frog's launch speed and the time spends in the air are 22.5m/s and 2.73s respectively.
Learn more about the range and time period of projectile motion here:
brainly.com/question/24136952
#SPJ1
Answer:
K = m g (A - A2)
Explanation:
In a block spring system the total energy is the sum of the potential energy plus the kinetic energy, for maximum elongation all the energy is potential
Em = U₀ = m g A
For when the system is at an ele
Elongation A2 less than A, energy has two parts
Em = K + U₂
K = Em –U₂
We substitute
K = m g A - m gA2
K = m g (A - A2)