Given that the design is not shown, for traditional nuclear reactors with control rods, the best way to meet an increased demand for energy would be to raise the control rods so that less neutrons are absorbed.
So, the most reasonable answer to the question is B.
Based on the very tip of the arrow the best answer would be; 3.3cm
But i could very well be wrong and it may be 3.35, but i would say 3.3 if it just wants to the nearest 10th
According to Gauss' law, the electric field outside a spherical surface uniformly charged is equal to the electric field if the whole charge were concentrated at the center of the sphere.
Therefore, when you are outside two spheres, the electric field will be the overlapping of the two electric fields:
E(r > r₂ > r₁) = k · q₁/r² + k · q₂/r² = k · (q₁ + q₂) / r²
where:
k = 9×10⁹ N·m²/C²
We have to transform our data into the correct units of measurement:
q₁ = 8.0 pC = 8.0×10⁻¹² C
q₂ = 3.0 pC = 3.0×10<span>⁻¹² C
</span><span>r = 5.0 cm = 0.05 m
Now, we can apply the formula:
</span><span>E(r) = k · (q₁ + q₂) / r²
= </span>9×10⁹ · (8.0×10⁻¹² + 3.0×10⁻¹²) / (0.05)²
= 39.6 N/C
Hence, <span>the magnitude of the electric field 5.0 cm from the center of the two surfaces is E = 39.6 N/C</span>
Properly input current above 40 voltage or 100 for example elecrical fan machine is used to perform a task, work output is always more than work
I electromagnets, the magnetic field is turned off when there is no induced current. So, electromagnets act as magnets only when current is induced in an insulated wire wrapped around a material mage of ferromagnetic material such as iron core rotating in a magnetic field.
So, option D is the correct one.
If you wanna know more about electromagnets, write down in comments {: