1) Convert 12.9 liters of Oxygen to mol at the given conditions:
PV = nRT ⇒ n = PV/RT
n = [1.2atm*12.9 l] / [0.082 atm l /K mol * 297K]
n = 0.636 mol of O2
2) use the stoichiometry derived from the balanced chemical equation
1mol C2H4 / 3 mol O2 = x mol C2H4 / 0.636 mol O2
x = 0.636 / 3 mol O2 = 0.212 mol O2.
Answer: 0.212 mol O2
5 examples of gases found in the normal home environment include; oxygen (air), nitrogen (most abundant element found in the air), carbon (air), a slight trace of argon and finally, hydrogen. these are- Nitrogen, oxygen, carbondioxide, carbonmonoxide and SO2.
a hypothesis is an idea or explanation that you then test through study and experimentation
Answer:
since ionic bonds, bonds that are charged, have very high boiling points, then the water would have a higher boiling point because it has a slight charge whereas carbon dioxide is stable.
Explanation:
Answer:
Making oxygen
Oxygen can be made from hydrogen peroxide, which decomposes slowly to form water and oxygen:
hydrogen peroxide → water + oxygen
2H2O2(aq) → 2H2O(l) + O2(g)
The rate of reaction can be increased using a catalyst, manganese(IV) oxide. When manganese(IV) oxide is added to hydrogen peroxide, bubbles of oxygen are given off.
Apparatus arranged to measure the volume of gas in a reaction. Reaction mixture is in a flask and gas travels out through a pipe in the top and down into a trough of water. It then bubbles up through a beehive shelf into an upturned glass jar filled with water. The gas collects at the top of the jar, forcing water out into the trough below.
To make oxygen in the laboratory, hydrogen peroxide is poured into a conical flask containing some manganese(IV) oxide. The gas produced is collected in an upside-down gas jar filled with water. As the oxygen collects in the top of the gas jar, it pushes the water out.
Instead of the gas jar and water bath, a gas syringe could be used to collect the oxygen.